Giải gấp hộ mình với các bạn
-
-
-
- Lớp 2
- Tự nhiên và xã hội
- Tiếng việt
- Toán học
- Tiếng Anh
- Đạo đức
- Âm nhạc
- Mỹ thuật
- HĐ trải nghiệm, hướng nghiệp
- Lớp 4
- Khoa học
- Tiếng việt
- Toán học
- Đạo đức
- Tiếng Anh
- Lịch sử và Địa lí
- Công nghệ
- HĐ trải nghiệm, hướng nghiệp
- GD Thể chất
- Âm nhạc
- Lớp 5
- Khoa học
- Toán học
- Tiếng việt
- Tin học
- Tiếng Anh
- Đạo đức
- Lịch sử và Địa lí
- HĐ trải nghiệm, hướng nghiệp
- Lớp 6
- Công nghệ
- Tin học
- Lịch sử và Địa lí
- GDCD
- Ngữ văn
- Toán học
- Khoa học tự nhiên
- Tiếng Anh
- Âm nhạc
- Mỹ thuật
- HĐ trải nghiệm, hướng nghiệp
- Lớp 7
- Tiếng Anh
- GDCD
- Toán học
- Công nghệ
- Tin học
- Ngữ văn
- Lịch sử và Địa lí
- Khoa học tự nhiên
- HĐ trải nghiệm, hướng nghiệp
- Âm nhạc
- Lớp 8
- Tiếng Anh
- GDCD
- Toán học
- Công nghệ
- Ngữ văn
- Khoa học tự nhiên
- Lịch sử và Địa lí
- HĐ trải nghiệm, hướng nghiệp
- GD Thể chất
- Âm nhạc
- Lớp 9
- Tiếng Anh
- GDCD
- Toán học
- Công nghệ
- Tin học
- Ngữ văn
- Khoa học tự nhiên
- HĐ trải nghiệm, hướng nghiệp
- Lịch sử và Địa lí
- Lớp 10
- Hóa học
- Tiếng Anh
- Lịch sử
- Sinh học
- Địa lí
- Vật lí
- Tin học
- Toán học
- GD kinh tế và pháp luật
- Công nghệ
- Ngữ văn
- HĐ trải nghiệm, hướng nghiệp
- GD Thể chất
- GD Quốc phòng và An ninh
- Lớp 11
- Hóa học
- Tiếng Anh
- Vật lí
- Tin học
- Toán học
- Địa lí
- Công nghệ
- Lịch sử
- Ngữ văn
- Sinh học
- GD Thể chất
- GD Quốc phòng và An ninh
- GD kinh tế và pháp luật
- HĐ trải nghiệm, hướng nghiệp
-
-
- KHÁM PHÁ
-
-
-
-
-
-
-
-
- FAVORITES
-
Giải gấp hộ mình với các bạn
Câu trả lời này dùng AI, hãy kiểm tra lại trước khi sử dụng
a. Để biểu diễn thích hợp tích của hai biểu thức, ta sử dụng quy tắc phân phối. Cụ thể, ta sẽ nhân từng hạng tử trong dấu ngoặc đầu tiên với từng hạng tử trong dấu ngoặc thứ hai:
(2x - 3y)(2x + 3y) = 2x 2x + 2x 3y - 3y 2x - 3y 3y.
Bây giờ, ta thực hiện các phép nhân cụ thể:
= 4x² + 6xy - 6xy - 9y².
Ghép các hạng tử cùng loại lại với nhau:
= 4x² - 9y².
Kết quả là 4x² - 9y², đây là một hạng động của loại hình phương trình bậc 2.
b. Để viết biểu thức sau dưới dạng bình phương một tổng hoặc một hiệu, ta sử dụng công thức:
x² - 8xy + 16y².
Công thức này tương ứng với (x - 4y)² vì:
(x - 4y)(x - 4y) = x² - 4xy - 4xy + 16y² = x² - 8xy + 16y².
Kết luận, biểu thức này có thể viết gọn lại là (x - 4y)².
c. Để phân tích đa thức x² - 2xy + y² - 36 thành hạng nhân, trước tiên, cần nhận biết x² - 2xy + y² là một bình phương hoàn hảo:
x² - 2xy + y² = (x - y)².
Như vậy, ta có:
x² - 2xy + y² - 36 = (x - y)² - 36.
Chúng ta có thể sử dụng công thức:
A² - B² = (A - B)(A + B),
để phân tích tiếp:
(x - y)² - 6² = [(x - y) - 6][(x - y) + 6].
Vậy, kết quả phân tích cuối cùng là:
(x - y - 6)(x - y + 6).
(2x - 3y)(2x + 3y) = 2x 2x + 2x 3y - 3y 2x - 3y 3y.
Bây giờ, ta thực hiện các phép nhân cụ thể:
= 4x² + 6xy - 6xy - 9y².
Ghép các hạng tử cùng loại lại với nhau:
= 4x² - 9y².
Kết quả là 4x² - 9y², đây là một hạng động của loại hình phương trình bậc 2.
b. Để viết biểu thức sau dưới dạng bình phương một tổng hoặc một hiệu, ta sử dụng công thức:
x² - 8xy + 16y².
Công thức này tương ứng với (x - 4y)² vì:
(x - 4y)(x - 4y) = x² - 4xy - 4xy + 16y² = x² - 8xy + 16y².
Kết luận, biểu thức này có thể viết gọn lại là (x - 4y)².
c. Để phân tích đa thức x² - 2xy + y² - 36 thành hạng nhân, trước tiên, cần nhận biết x² - 2xy + y² là một bình phương hoàn hảo:
x² - 2xy + y² = (x - y)².
Như vậy, ta có:
x² - 2xy + y² - 36 = (x - y)² - 36.
Chúng ta có thể sử dụng công thức:
A² - B² = (A - B)(A + B),
để phân tích tiếp:
(x - y)² - 6² = [(x - y) - 6][(x - y) + 6].
Vậy, kết quả phân tích cuối cùng là:
(x - y - 6)(x - y + 6).
Đăng phản hồi
© 2024 Học Tốt Online - Chia Sẻ Tài Liệu Học Tập và Giải Bài Tập Miễn Phí Vietnamese