-
-
-
- Lớp 2
- Tự nhiên và xã hội
- Tiếng việt
- Toán học
- Tiếng Anh
- Đạo đức
- Âm nhạc
- Mỹ thuật
- HĐ trải nghiệm, hướng nghiệp
- Lớp 4
- Khoa học
- Tiếng việt
- Toán học
- Đạo đức
- Tiếng Anh
- Lịch sử và Địa lí
- Công nghệ
- HĐ trải nghiệm, hướng nghiệp
- GD Thể chất
- Âm nhạc
- Lớp 5
- Khoa học
- Toán học
- Tiếng việt
- Tin học
- Tiếng Anh
- Đạo đức
- Lịch sử và Địa lí
- HĐ trải nghiệm, hướng nghiệp
- Lớp 6
- Công nghệ
- Tin học
- Lịch sử và Địa lí
- GDCD
- Ngữ văn
- Toán học
- Khoa học tự nhiên
- Tiếng Anh
- Âm nhạc
- Mỹ thuật
- HĐ trải nghiệm, hướng nghiệp
- Lớp 7
- Tiếng Anh
- GDCD
- Toán học
- Công nghệ
- Tin học
- Ngữ văn
- Lịch sử và Địa lí
- Khoa học tự nhiên
- HĐ trải nghiệm, hướng nghiệp
- Âm nhạc
- Lớp 8
- Tiếng Anh
- GDCD
- Toán học
- Công nghệ
- Ngữ văn
- Khoa học tự nhiên
- Lịch sử và Địa lí
- HĐ trải nghiệm, hướng nghiệp
- GD Thể chất
- Âm nhạc
- Lớp 9
- Tiếng Anh
- GDCD
- Toán học
- Công nghệ
- Tin học
- Ngữ văn
- Khoa học tự nhiên
- HĐ trải nghiệm, hướng nghiệp
- Lịch sử và Địa lí
- Lớp 10
- Hóa học
- Tiếng Anh
- Lịch sử
- Sinh học
- Địa lí
- Vật lí
- Tin học
- Toán học
- GD kinh tế và pháp luật
- Công nghệ
- Ngữ văn
- HĐ trải nghiệm, hướng nghiệp
- GD Thể chất
- GD Quốc phòng và An ninh
- Lớp 11
- Hóa học
- Tiếng Anh
- Vật lí
- Tin học
- Toán học
- Địa lí
- Công nghệ
- Lịch sử
- Ngữ văn
- Sinh học
- GD Thể chất
- GD Quốc phòng và An ninh
- GD kinh tế và pháp luật
- HĐ trải nghiệm, hướng nghiệp
-
-
- KHÁM PHÁ
-
-
-
-
-
-
-
-
- FAVORITES
-
thực hiện phép cộng ptđại số 6b-3/a^2 -b^2 + 6a-3/b^2-a^2 cứu mk
Câu trả lời này dùng AI, hãy kiểm tra lại trước khi sử dụng
Để thực hiện phép cộng giữa hai phân thức đại số \( \frac{6b - 3}{a^2 - b^2} + \frac{6a - 3}{b^2 - a^2} \), chúng ta sẽ làm theo các bước sau:
1. Nhận xét về mẫu số:
- Mẫu số của hai phân thức là \( a^2 - b^2 \) và \( b^2 - a^2 \).
- Ta biết rằng \( a^2 - b^2 = -(b^2 - a^2) \). Do đó, mẫu số của phân thức thứ hai có thể viết lại là \( -(a^2 - b^2) \).
2. Chuyển đổi mẫu số:
- Phân thức thứ hai sẽ trở thành:
\[
\frac{6a - 3}{b^2 - a^2} = \frac{6a - 3}{-(a^2 - b^2)} = -\frac{6a - 3}{a^2 - b^2}
\]
3. Kết hợp hai phân thức:
- Bây giờ chúng ta có:
\[
\frac{6b - 3}{a^2 - b^2} - \frac{6a - 3}{a^2 - b^2} = \frac{(6b - 3) - (6a - 3)}{a^2 - b^2}
\]
4. Rút gọn tử số:
- Tử số là:
\[
(6b - 3) - (6a - 3) = 6b - 3 - 6a + 3 = 6b - 6a = 6(b - a)
\]
- Do đó, phân thức trở thành:
\[
\frac{6(b - a)}{a^2 - b^2}
\]
5. Nhân chia với -1 để có dạng tiêu chuẩn:
- Chúng ta có thể viết lại tử số và mẫu số để dễ hiểu hơn:
\[
\frac{6(b - a)}{-(b^2 - a^2)} = \frac{-6(b - a)}{b^2 - a^2}
\]
- Tuy nhiên, để giữ nguyên dấu của phân thức ban đầu, chúng ta sẽ giữ nguyên dấu trừ ở tử số:
\[
\frac{6(b - a)}{a^2 - b^2} = \frac{6(a - b)}{b^2 - a^2}
\]
6. Kết luận:
- Phép cộng của hai phân thức đại số đã cho là:
\[
\frac{6(a - b)}{b^2 - a^2}
\]
Vậy, kết quả cuối cùng của phép cộng này là \( \frac{6(a - b)}{b^2 - a^2} \).
1. Nhận xét về mẫu số:
- Mẫu số của hai phân thức là \( a^2 - b^2 \) và \( b^2 - a^2 \).
- Ta biết rằng \( a^2 - b^2 = -(b^2 - a^2) \). Do đó, mẫu số của phân thức thứ hai có thể viết lại là \( -(a^2 - b^2) \).
2. Chuyển đổi mẫu số:
- Phân thức thứ hai sẽ trở thành:
\[
\frac{6a - 3}{b^2 - a^2} = \frac{6a - 3}{-(a^2 - b^2)} = -\frac{6a - 3}{a^2 - b^2}
\]
3. Kết hợp hai phân thức:
- Bây giờ chúng ta có:
\[
\frac{6b - 3}{a^2 - b^2} - \frac{6a - 3}{a^2 - b^2} = \frac{(6b - 3) - (6a - 3)}{a^2 - b^2}
\]
4. Rút gọn tử số:
- Tử số là:
\[
(6b - 3) - (6a - 3) = 6b - 3 - 6a + 3 = 6b - 6a = 6(b - a)
\]
- Do đó, phân thức trở thành:
\[
\frac{6(b - a)}{a^2 - b^2}
\]
5. Nhân chia với -1 để có dạng tiêu chuẩn:
- Chúng ta có thể viết lại tử số và mẫu số để dễ hiểu hơn:
\[
\frac{6(b - a)}{-(b^2 - a^2)} = \frac{-6(b - a)}{b^2 - a^2}
\]
- Tuy nhiên, để giữ nguyên dấu của phân thức ban đầu, chúng ta sẽ giữ nguyên dấu trừ ở tử số:
\[
\frac{6(b - a)}{a^2 - b^2} = \frac{6(a - b)}{b^2 - a^2}
\]
6. Kết luận:
- Phép cộng của hai phân thức đại số đã cho là:
\[
\frac{6(a - b)}{b^2 - a^2}
\]
Vậy, kết quả cuối cùng của phép cộng này là \( \frac{6(a - b)}{b^2 - a^2} \).
Đăng phản hồi
© 2024 Học Tốt Online - Chia Sẻ Tài Liệu Học Tập và Giải Bài Tập Miễn Phí Vietnamese