....................

....................

Câu trả lời này dùng AI, hãy kiểm tra lại trước khi sử dụng
a) Để tìm miền nghiệm của bất phương trình x - 2y > 4, đầu tiên chúng ta chuyển bất phương trình thành dạng phương trình bằng cách đổi dấu: x - 2y = 4. Sau đó, ta tìm tọa độ giao điểm của đường thẳng này với các trục toạ độ.

- Giao điểm với trục hoành (x-axis, y=0):
x - 2(0) = 4 => x = 4. Do đó, điểm giao nhau là (4, 0).

- Giao điểm với trục tung (y-axis, x=0):
0 - 2y = 4 => -2y = 4 => y = -2. Do đó, điểm giao nhau là (0, -2).

Khi đã có hai điểm (4, 0) và (0, -2), ta vẽ đường thẳng qua hai điểm này. Để xét miền nghiệm của bất phương trình x - 2y > 4, ta chọn một điểm bất kỳ nằm ngoài đường thẳng này, ví dụ như điểm O(0, 0):

Thay vào bất phương trình:
0 - 2(0) > 4 => 0 > 4 (sai)

Điều này có nghĩa là miền nghiệm của bất phương trình nằm bên trên đường thẳng (vì dấu lớn hơn). Chúng ta sẽ đánh dấu vùng này trong hệ tọa độ.

b) Nửa mặt phẳng không bị gạch trong hình sau là phần nằm trên đường thẳng x - 2y = 4 (vì đường thẳng này không bao gồm trong miền nghiệm, do không có dấu "="). Phần gạch trong hình là miền không thỏa mãn bất phương trình, tức là phần nằm dưới đường thẳng.

c) Để kiểm tra xem điểm (4, -2) có phải là nghiệm của bất phương trình hay không, ta thay tọa độ vào bất phương trình:
4 - 2(-2) > 4
=> 4 + 4 > 4
=> 8 > 4 (đúng)

Do đó, (4, -2) là một nghiệm của bất phương trình x - 2y > 4.

d) Đường thẳng d: x - 2y = 4 thuộc miền nghiệm của bất phương trình, nhưng bản thân nó không là nghiệm vì bất phương trình không bao gồm dấu "=". Tuy nhiên, miền nghiệm của bất phương trình này trải dài ra phía trên đường thẳng d trong hệ tọa độ.
Đăng phản hồi