Giải giúp em bài này với ạ
-
-
-
- Lớp 2
- Tự nhiên và xã hội
- Tiếng việt
- Toán học
- Tiếng Anh
- Đạo đức
- Âm nhạc
- Mỹ thuật
- HĐ trải nghiệm, hướng nghiệp
- Lớp 4
- Khoa học
- Tiếng việt
- Toán học
- Đạo đức
- Tiếng Anh
- Lịch sử và Địa lí
- Công nghệ
- HĐ trải nghiệm, hướng nghiệp
- GD Thể chất
- Âm nhạc
- Lớp 5
- Khoa học
- Toán học
- Tiếng việt
- Tin học
- Tiếng Anh
- Đạo đức
- Lịch sử và Địa lí
- HĐ trải nghiệm, hướng nghiệp
- Lớp 6
- Công nghệ
- Tin học
- Lịch sử và Địa lí
- GDCD
- Ngữ văn
- Toán học
- Khoa học tự nhiên
- Tiếng Anh
- Âm nhạc
- Mỹ thuật
- HĐ trải nghiệm, hướng nghiệp
- Lớp 7
- Tiếng Anh
- GDCD
- Toán học
- Công nghệ
- Tin học
- Ngữ văn
- Lịch sử và Địa lí
- Khoa học tự nhiên
- HĐ trải nghiệm, hướng nghiệp
- Âm nhạc
- Lớp 8
- Tiếng Anh
- GDCD
- Toán học
- Công nghệ
- Ngữ văn
- Khoa học tự nhiên
- Lịch sử và Địa lí
- HĐ trải nghiệm, hướng nghiệp
- GD Thể chất
- Âm nhạc
- Lớp 9
- Tiếng Anh
- GDCD
- Toán học
- Công nghệ
- Tin học
- Ngữ văn
- Khoa học tự nhiên
- HĐ trải nghiệm, hướng nghiệp
- Lịch sử và Địa lí
- Lớp 10
- Hóa học
- Tiếng Anh
- Lịch sử
- Sinh học
- Địa lí
- Vật lí
- Tin học
- Toán học
- GD kinh tế và pháp luật
- Công nghệ
- Ngữ văn
- HĐ trải nghiệm, hướng nghiệp
- GD Thể chất
- GD Quốc phòng và An ninh
- Lớp 11
- Hóa học
- Tiếng Anh
- Vật lí
- Tin học
- Toán học
- Địa lí
- Công nghệ
- Lịch sử
- Ngữ văn
- Sinh học
- GD Thể chất
- GD Quốc phòng và An ninh
- GD kinh tế và pháp luật
- HĐ trải nghiệm, hướng nghiệp
-
-
- KHÁM PHÁ
-
-
-
-
-
-
-
-
- FAVORITES
-
Giải giúp em bài này với ạ
Câu trả lời này dùng AI, hãy kiểm tra lại trước khi sử dụng
Để giải bài toán này, ta giả sử số xi măng bán được trong ngày đầu tiên là x (tấn). Theo đề bài, số xi măng bán được trong ngày thứ hai là 1,25 tấn.
Cách giải bài toán như sau:
1. Tính tổng số xi măng bán được trong ba ngày (bao gồm cả ba ngày):
- Theo đề bài, trung bình cả ba ngày là 1,75 tấn. Vậy tổng số xi măng bán được trong ba ngày là:
\[
1,75 \times 3 = 5,25 \text{ tấn}
\]
2. Ta có tổng số tấn xi măng bán được trong ba ngày được tính bằng x (ngày đầu tiên) + 1,25 (ngày thứ hai) + y (ngày thứ ba). Gọi số tấn xi măng bán được trong ngày thứ ba là y.
Vậy ta có phương trình:
\[
x + 1,25 + y = 5,25
\]
Sắp xếp lại phương trình, ta sẽ có:
\[
x + y = 5,25 - 1,25 = 4 \text{ tấn}
\]
3. Theo đề bài, số xi măng bán được trong hai ngày đầu lớn hơn ngày đầu tiên thì ta sẽ có:
\[
x + 1,25 > x
\]
điều này luôn đúng.
4. Từ phương trình x + y = 4, ta có y = 4 - x.
Vì x + y > 1,25 cho hai ngày đầu tiên:
\[
x + 1,25 > 4 \Rightarrow x > 4 - 1,25 = 2,75
\]
Và y vẫn phải lớn hơn 0.
5. Từ đây, ta biết rằng:
- x phải lớn hơn 2,75 và y phải không âm.
6. Kết luận số xi măng bán được trong ngày thứ ba:
\[
y = 4 - x
\]
Với x > 2,75, thì y sẽ lớn hơn 1,25 và nhỏ hơn 2 tấn.
Nếu lấy 2,75 tấn cho x, thì y = 4 - 2,75 = 1,25 tấn. Ngày thứ ba bán được 1,25 tấn.
Nếu x là 3 tấn, thì y = 4 - 3 = 1 tấn.
Còn nếu x là 2 tấn, thì giá trị này không hợp lý vì không thỏa mãn yêu cầu.
Vậy có thể nói rằng ngày thứ ba sẽ bán một lượng xi măng nào đó để đảm bảo tổng và trung bình được đáp án cuối cùng. Nếu x = 2,75 thì y = 1,25, còn nếu x = 3 thì y là 1. Để không vi phạm điều kiện đã đặt ra, ta phải điều chỉnh lại x và y tương ứng.
Muốn tìm số xi măng bán được trong ngày thứ ba, dựa vào việc phân tích cụ thể cho từng trường hợp.
Cách giải bài toán như sau:
1. Tính tổng số xi măng bán được trong ba ngày (bao gồm cả ba ngày):
- Theo đề bài, trung bình cả ba ngày là 1,75 tấn. Vậy tổng số xi măng bán được trong ba ngày là:
\[
1,75 \times 3 = 5,25 \text{ tấn}
\]
2. Ta có tổng số tấn xi măng bán được trong ba ngày được tính bằng x (ngày đầu tiên) + 1,25 (ngày thứ hai) + y (ngày thứ ba). Gọi số tấn xi măng bán được trong ngày thứ ba là y.
Vậy ta có phương trình:
\[
x + 1,25 + y = 5,25
\]
Sắp xếp lại phương trình, ta sẽ có:
\[
x + y = 5,25 - 1,25 = 4 \text{ tấn}
\]
3. Theo đề bài, số xi măng bán được trong hai ngày đầu lớn hơn ngày đầu tiên thì ta sẽ có:
\[
x + 1,25 > x
\]
điều này luôn đúng.
4. Từ phương trình x + y = 4, ta có y = 4 - x.
Vì x + y > 1,25 cho hai ngày đầu tiên:
\[
x + 1,25 > 4 \Rightarrow x > 4 - 1,25 = 2,75
\]
Và y vẫn phải lớn hơn 0.
5. Từ đây, ta biết rằng:
- x phải lớn hơn 2,75 và y phải không âm.
6. Kết luận số xi măng bán được trong ngày thứ ba:
\[
y = 4 - x
\]
Với x > 2,75, thì y sẽ lớn hơn 1,25 và nhỏ hơn 2 tấn.
Nếu lấy 2,75 tấn cho x, thì y = 4 - 2,75 = 1,25 tấn. Ngày thứ ba bán được 1,25 tấn.
Nếu x là 3 tấn, thì y = 4 - 3 = 1 tấn.
Còn nếu x là 2 tấn, thì giá trị này không hợp lý vì không thỏa mãn yêu cầu.
Vậy có thể nói rằng ngày thứ ba sẽ bán một lượng xi măng nào đó để đảm bảo tổng và trung bình được đáp án cuối cùng. Nếu x = 2,75 thì y = 1,25, còn nếu x = 3 thì y là 1. Để không vi phạm điều kiện đã đặt ra, ta phải điều chỉnh lại x và y tương ứng.
Muốn tìm số xi măng bán được trong ngày thứ ba, dựa vào việc phân tích cụ thể cho từng trường hợp.
Đăng phản hồi
© 2024 Học Tốt Online - Chia Sẻ Tài Liệu Học Tập và Giải Bài Tập Miễn Phí Vietnamese