có 1 câu thôi ạ nhanh nhanh giúp e ạ

có 1 câu thôi ạ nhanh nhanh giúp e ạ
Câu trả lời này dùng AI, hãy kiểm tra lại trước khi sử dụng
Để chứng minh tứ giác AMHC là hình thang vuông, ta làm theo các bước sau:

1. Đánh giá các điểm:
- Gọi A, B, C lần lượt là các điểm trong tam giác ABC vuông tại A.
- M là trung điểm của đoạn BC.
- H là điểm sao cho từ M kẻ thẳng đứng MH vuông góc với AB.

2. Ghi nhận các tính chất:
- Vì M là trung điểm của BC nên chúng ta có MB = MC (tính chất trung điểm).
- Đường thẳng MH là đường vuông góc với AB.

3. Xác định tính chất của các góc:
- Xét tam giác AMC: Gọi O là giao điểm của MH và AB.
- Theo định nghĩa, vì MH vuông góc với AB, nên góc AMH = 90 độ.
- Tương tự, ta cũng có góc CMH = 90 độ vì MH vuông góc với AB.

4. Chứng minh tứ giác AMHC có hai cặp cạnh đối diện song song:
- Ta có MH // AC (vì cả hai đều vuông góc với AB).
- Bởi vậy, tứ giác AMHC có hai cặp cạnh đối diện AM và HC, cũng như MH và AC đều song song.

5. Kết thúc:
- Do có hai cặp cạnh đối diện song song và một góc vuông ở tại H, ta có thể kết luận rằng tứ giác AMHC là hình thang vuông.

Từ tất cả các bước chứng minh trên, ta đã xác nhận AMHC là hình thang vuông.
Đăng phản hồi