Cho hai hàm số y = 2mx + 11 và y = (1 – m)x + 2. Với giá trị nào của m thì đồ thị của hai hàm số đã cho là: a) Hai đường thẳng song song với nhau b) Hai đường thẳng cắt nhau?

Cho hai hàm số y = 2mx + 11 và y = (1 – m)x + 2. Với giá trị nào của m thì đồ thị của hai hàm số đã cho là: a) Hai đường thẳng song song với nhau? b) Hai đường thẳng cắt nhau?
This anwser using AI, please
Để xác định điều kiện cho hai hàm số y = 2mx + 11 và y = (1 – m)x + 2 có quan hệ song song hoặc cắt nhau, trước tiên chúng ta cần tìm độ dốc (hệ số góc) của từng đường thẳng.

1. Đối với hàm số đầu tiên y = 2mx + 11, độ dốc m1 = 2m.
2. Đối với hàm số thứ hai y = (1 – m)x + 2, độ dốc m2 = 1 - m.

a) Hai đường thẳng song song với nhau khi chúng có cùng độ dốc, tức là:

2m = 1 - m.

Giải phương trình trên:

2m + m = 1
3m = 1
m = 1/3.

Vậy, để hai đường thẳng song song, giá trị của m phải là m = 1/3.

b) Hai đường thẳng cắt nhau khi chúng có độ dốc khác nhau, tức là:

2m ≠ 1 - m.

Giải bất phương trình trên:

2m + m ≠ 1
3m ≠ 1
m ≠ 1/3.

Vậy, để hai đường thẳng cắt nhau, giá trị của m phải khác 1/3, tức là m có thể là mọi giá trị khác ngoài m = 1/3.
Post Reply