tìm tọa độ các đỉnh,độ dài các trục ,tiêu cự,tiêu điểm ,tâm sai cuả elip:(E):4x²+9y²=1

tìm tọa độ các đỉnh,độ dài các trục ,tiêu cự,tiêu điểm ,tâm sai cuả elip:(E):4x²+9y²=1
Câu trả lời này dùng AI, hãy kiểm tra lại trước khi sử dụng
Để tìm tọa độ các đỉnh, độ dài các trục, tiêu cự, tiêu điểm và tâm sai của elip (E): 4x² + 9y² = 1, ta sẽ tiến hành như sau:

Bước 1: Đặt phương trình elip về dạng chuẩn

Phương trình cho elip có dạng tổng quát là:

(x - h)²/a² + (y - k)²/b² = 1

Trong đó (h, k) là tọa độ tâm của elip, a là bán trục dài (trục x), và b là bán trục ngắn (trục y).

Để đưa elip đã cho vào dạng chuẩn, ta sẽ chia cả hai vế của phương trình cho 1:

4x² + 9y² = 1
=> (x²/ (1/4)) + (y²/ (1/9)) = 1
=> (x²/(1/4)) + (y²/(1/9)) = 1

Từ đó ta có a² = 1/4 và b² = 1/9.

Bước 2: Tính a và b

a² = 1/4 ⇒ a = √(1/4) = 1/2

b² = 1/9 ⇒ b = √(1/9) = 1/3

Bước 3: Xác định tọa độ của tâm

Tâm của elip là (h, k). Trong phương trình trên, tâm là (0, 0) vì không có h và k trong phương trình.

Bước 4: Xác định tọa độ các đỉnh và độ dài các trục

- Đỉnh theo trục x (bán trục dài): tọa độ là (±a, 0) = (±1/2, 0)
- Đỉnh theo trục y (bán trục ngắn): tọa độ là (0, ±b) = (0, ±1/3)

Độ dài của các trục:
- Độ dài trục lớn (trục x) là 2a = 2*(1/2) = 1
- Độ dài trục nhỏ (trục y) là 2b = 2*(1/3) = 2/3

Bước 5: Tính tiêu cự và tọa độ tiêu điểm

Tiêu cự c của elip được tính bằng công thức:

c = √(a² - b²)

c = √(1/4 - 1/9) = √(9/36 - 4/36) = √(5/36) = √5/6

Tọa độ các tiêu điểm (c, 0) và (-c, 0):

Các tiêu điểm của elip là (√5/6, 0) và (-√5/6, 0).

Bước 6: Tính tâm sai

Tâm sai e được tính bằng công thức:

e = c/a

Từ đó, ta có:

e = (√5/6) / (1/2) = √5/3.

Tóm tắt kết quả:

- Tọa độ tâm: (0, 0)
- Tọa độ các đỉnh: (±1/2, 0) và (0, ±1/3)
- Độ dài trục lớn: 1
- Độ dài trục nhỏ: 2/3
- Tọa độ tiêu điểm: (√5/6, 0) và (-√5/6, 0)
- Tâm sai: √5/3.
Đăng phản hồi