cú vớiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

cú vớiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Câu trả lời này dùng AI, hãy kiểm tra lại trước khi sử dụng
Để so sánh các biểu thức A và B trong bài toán này, ta sẽ tính toán từng biểu thức và so sánh giá trị.

### a.

1. Tính \( A \):

\( A = \frac{10}{2^7} + \frac{10}{2^6} \)

Ta có:
- \( 2^7 = 128 \)
- \( 2^6 = 64 \)

Vậy:
- \( A = \frac{10}{128} + \frac{10}{64} \)
- \( A = \frac{10}{128} + \frac{20}{128} \) (vì \(\frac{10}{64} = \frac{20}{128}\))
- \( A = \frac{30}{128} = \frac{15}{64} \)

2. Tính \( B \):

\( B = \frac{11}{2^7} + \frac{9}{2^6} \)

Tương tự như trên:
- \( B = \frac{11}{128} + \frac{9}{64} \)
- \( B = \frac{11}{128} + \frac{18}{128} \) (vì \(\frac{9}{64} = \frac{18}{128}\))
- \( B = \frac{29}{128} \)

So sánh \( A \) và \( B \):
- Ta có \( A = \frac{15}{64} = \frac{30}{128} \)
- So sánh \( \frac{30}{128} \) với \( \frac{29}{128} \): \
\[ \frac{30}{128} > \frac{29}{128} \]
=> \( A > B \).

### b.

1. Tính \( A \):

\( A = \frac{10}{2^7} + \frac{9}{2^6} + \frac{1}{2^6} \)

Vậy:
- \( A = \frac{10}{128} + \frac{9}{64} + \frac{1}{64} \)
- \( A = \frac{10}{128} + \frac{10}{64} \)
- \( A = \frac{10}{128} + \frac{20}{128} \) (vì \(\frac{10}{64} = \frac{20}{128}\))
- \( A = \frac{30}{128} = \frac{15}{64} \)

2. Tính \( B \):

\( B = \frac{10}{2^7} + \frac{9}{2^6} + \frac{1}{2^7} \)

Vậy:
- \( B = \frac{10}{128} + \frac{9}{64} + \frac{1}{128} \)
- \( B = \frac{10}{128} + \frac{18}{128} + \frac{1}{128} \) (vì \(\frac{9}{64} = \frac{18}{128}\))
- \( B = \frac{29}{128} + \frac{1}{128} \)
- \( B = \frac{30}{128} = \frac{15}{64} \)

So sánh \( A \) và \( B \):
- Ta thấy \( A = \frac{15}{64} \) và \( B = \frac{15}{64} \)
=> \( A = B \).

Tóm lại:
- ở phần a, \( A > B \)
- ở phần b, \( A = B \)
Đăng phản hồi