Giải hộ bài nay vs ạ

Giải hộ bài nay vs ạ

Câu trả lời này dùng AI, hãy kiểm tra lại trước khi sử dụng
Câu 15:

a) Phân tích đa thức: 4x^2 - 49.
Đây là một hiệu của hai bình phương. Theo công thức a^2 - b^2 = (a - b)(a + b), ta có a = 2x và b = 7. Do đó:

4x^2 - 49 = (2x)^2 - 7^2 = (2x - 7)(2x + 7).

b) Phân tích đa thức: 2x^3 - 20x^2 - 8xy + 50x.
Đầu tiên, ta nhận thấy rằng có số 2 có thể được đưa ra ngoài làm hệ số chung:

2(x^3 - 10x^2 - 4xy + 25x).

Bây giờ ta sẽ phân tích đa thức bên trong. Chúng ta có thể nhóm lại như sau:

= 2[(x^3 - 10x^2) + (-4xy + 25x)].

Ở nhóm đầu tiên, ta có thể lấy x^2 ra ngoài:

= 2[x^2(x - 10) - 4x(y - \frac{25}{4})].

Để tiện cho việc phân tích tiếp, ta có thể sử dụng phương pháp chia nhóm hoặc xem thử có dư tính toán nào. Tuy nhiên, nếu ta không tìm ra cách phân tích được hơn, ta có thể giữ hoặc phân tích thêm.

Câu 16:

a) Để chứng minh tứ giác ADCB là hình bình hành, ta cần chứng minh rằng hai cặp cạnh đối diện bằng nhau. Gọi I là trung điểm của AC, chúng ta có:

- AD và BC là hai đoạn thẳng.

Theo định nghĩa tứ giác bình hành, hai cạnh đối diện phải song song và bằng nhau. Nếu thực hiện các phép tính về độ dài hoặc góc sẽ giúp xác nhận điều này.

b) Đoạn thẳng đi qua điểm D và song song với AC cắt BC tại điểm E. Ta cần chứng minh rằng AE = EC.

Để thực hiện điều này, chúng ta sử dụng định lý: Nếu hai đường thẳng song song thì tỉ lệ hai đoạn thẳng tương ứng sẽ bằng nhau (các cặp đoạn AE và EC). Điều này có thể được thực hiện bằng cách áp dụng các nguyên lý hình học liên quan đến đường thẳng song song và phân đoạn.

Tiến hành các tính toán cần thiết sẽ minh họa rõ ràng hơn dấu hiệu mà ta cần chứng minh AE = EC.
Đăng phản hồi