-
-
-
- Lớp 2
- Tự nhiên và xã hội
- Tiếng việt
- Toán học
- Tiếng Anh
- Đạo đức
- Âm nhạc
- Mỹ thuật
- HĐ trải nghiệm, hướng nghiệp
- Lớp 4
- Khoa học
- Tiếng việt
- Toán học
- Đạo đức
- Tiếng Anh
- Lịch sử và Địa lí
- Công nghệ
- HĐ trải nghiệm, hướng nghiệp
- GD Thể chất
- Âm nhạc
- Lớp 5
- Khoa học
- Toán học
- Tiếng việt
- Tin học
- Tiếng Anh
- Đạo đức
- Lịch sử và Địa lí
- HĐ trải nghiệm, hướng nghiệp
- Lớp 6
- Công nghệ
- Tin học
- Lịch sử và Địa lí
- GDCD
- Ngữ văn
- Toán học
- Khoa học tự nhiên
- Tiếng Anh
- Âm nhạc
- Mỹ thuật
- HĐ trải nghiệm, hướng nghiệp
- Lớp 7
- Tiếng Anh
- GDCD
- Toán học
- Công nghệ
- Tin học
- Ngữ văn
- Lịch sử và Địa lí
- Khoa học tự nhiên
- HĐ trải nghiệm, hướng nghiệp
- Âm nhạc
- Lớp 8
- Tiếng Anh
- GDCD
- Toán học
- Công nghệ
- Ngữ văn
- Khoa học tự nhiên
- Lịch sử và Địa lí
- HĐ trải nghiệm, hướng nghiệp
- GD Thể chất
- Âm nhạc
- Lớp 9
- Tiếng Anh
- GDCD
- Toán học
- Công nghệ
- Tin học
- Ngữ văn
- Khoa học tự nhiên
- HĐ trải nghiệm, hướng nghiệp
- Lịch sử và Địa lí
- Lớp 10
- Hóa học
- Tiếng Anh
- Lịch sử
- Sinh học
- Địa lí
- Vật lí
- Tin học
- Toán học
- GD kinh tế và pháp luật
- Công nghệ
- Ngữ văn
- HĐ trải nghiệm, hướng nghiệp
- GD Thể chất
- GD Quốc phòng và An ninh
- Lớp 11
- Hóa học
- Tiếng Anh
- Vật lí
- Tin học
- Toán học
- Địa lí
- Công nghệ
- Lịch sử
- Ngữ văn
- Sinh học
- GD Thể chất
- GD Quốc phòng và An ninh
- GD kinh tế và pháp luật
- HĐ trải nghiệm, hướng nghiệp
-
-
- KHÁM PHÁ
-
-
-
-
-
-
-
-
- FAVORITES
-
tính hợp lý...............................
Câu trả lời này dùng AI, hãy kiểm tra lại trước khi sử dụng
b)
Tính toán:
Bước 1: Tính giá trị của biểu thức bên trong dấu ngoặc.
\[
\frac{1}{3} + \frac{12}{67} + \frac{13}{41}
\]
Tìm mẫu số chung cho các phân số. Mẫu số chung của 3, 67, và 41 là 3 67 41 = 8,241.
- Phân số đầu tiên:
\[
\frac{1}{3} = \frac{2747}{8241}
\]
- Phân số thứ hai:
\[
\frac{12}{67} = \frac{1476}{8241}
\]
- Phân số thứ ba:
\[
\frac{13}{41} = \frac{2625}{8241}
\]
Cộng các phân số lại:
\[
\frac{2747 + 1476 + 2625}{8241} = \frac{6850}{8241}
\]
Bước 2: Tính giá trị của biểu thức bên phải dấu trừ.
\[
\frac{79}{67} - \frac{28}{41}
\]
Cũng tìm mẫu số chung cho cả hai:
Mẫu số chung là 67 * 41 = 2747.
- Phân số đầu tiên:
\[
\frac{79}{67} = \frac{3239}{2747}
\]
- Phân số thứ hai:
\[
\frac{28}{41} = \frac{1844}{2747}
\]
Trừ các phân số:
\[
\frac{3239 - 1844}{2747} = \frac{1395}{2747}
\]
Bước 3: Bây giờ thực hiện phép trừ giữa hai kết quả:
\[
\frac{6850}{8241} - \frac{1395}{2747}
\]
Tìm mẫu số chung là 8241:
\[
\frac{1395 \times 3}{8241} = \frac{4185}{8241}
\]
Phép trừ giữa hai phân số:
\[
\frac{6850 - 4185}{8241} = \frac{2665}{8241}
\]
Kết quả cuối cùng:
\[
\frac{2665}{8241}
\]
---
d)
Tính toán:
Bước 1: Rút gọn biểu thức phía trên:
\[
\frac{2 \cdot 6^9 - 2^5 \cdot 18^4}{2^2 \cdot 6^8}
\]
Rút gọn \(2\) từ cả tử và mẫu:
\[
\frac{6^9 - 2^4 \cdot 18^4}{2 \cdot 6^8} = \frac{6^9 - 16 \cdot (6^2)^4}{2 \cdot 6^8}
\]
\[
= \frac{6^9 - 16 \cdot 6^8}{2 \cdot 6^8} = \frac{6^8(6 - 16)}{2 \cdot 6^8} = \frac{6 - 16}{2} = \frac{-10}{2} = -5
\]
Kết quả cuối cùng:
\[
-5
\]
---
f)
Tính toán từng phần của biểu thức:
Bước 1: Tính
\[
-\frac{3}{4} + \frac{2}{5}
\]
Tìm mẫu số chung cho 4 và 5 là 20. Rút gọn:
\[
-\frac{15}{20} + \frac{8}{20} = -\frac{7}{20}
\]
Bước 2: Phép chia với \(\frac{3}{7}\):
\[
-\frac{7}{20} \div \frac{3}{7} = -\frac{7}{20} \cdot \frac{7}{3} = -\frac{49}{60}
\]
Bước 3: Tính tiếp với \(\left(\frac{3}{7}\right) + \left(-\frac{1}{4}\right)\):
Rút gọn:
\[
\frac{3}{7} - \frac{1}{4}
\]
Mẫu số chung là 28:
\[
\frac{12}{28} - \frac{7}{28} = \frac{5}{28}
\]
Bước 4: Rút gọn toàn bộ:
\[
-\frac{49}{60} + \frac{5}{28}
\]
Mẫu chung là 420:
\[
-\frac{343}{420} + \frac{75}{420} = -\frac{268}{420} = -\frac{67}{105}
\]
Kết quả cuối cùng:
\[
-\frac{67}{105}
\]
---
h)
Bài toán giống bài b, vì vậy ta sẽ nhận được cùng kết quả là:
\[
\frac{2665}{8241}
\]
Tính toán:
Bước 1: Tính giá trị của biểu thức bên trong dấu ngoặc.
\[
\frac{1}{3} + \frac{12}{67} + \frac{13}{41}
\]
Tìm mẫu số chung cho các phân số. Mẫu số chung của 3, 67, và 41 là 3 67 41 = 8,241.
- Phân số đầu tiên:
\[
\frac{1}{3} = \frac{2747}{8241}
\]
- Phân số thứ hai:
\[
\frac{12}{67} = \frac{1476}{8241}
\]
- Phân số thứ ba:
\[
\frac{13}{41} = \frac{2625}{8241}
\]
Cộng các phân số lại:
\[
\frac{2747 + 1476 + 2625}{8241} = \frac{6850}{8241}
\]
Bước 2: Tính giá trị của biểu thức bên phải dấu trừ.
\[
\frac{79}{67} - \frac{28}{41}
\]
Cũng tìm mẫu số chung cho cả hai:
Mẫu số chung là 67 * 41 = 2747.
- Phân số đầu tiên:
\[
\frac{79}{67} = \frac{3239}{2747}
\]
- Phân số thứ hai:
\[
\frac{28}{41} = \frac{1844}{2747}
\]
Trừ các phân số:
\[
\frac{3239 - 1844}{2747} = \frac{1395}{2747}
\]
Bước 3: Bây giờ thực hiện phép trừ giữa hai kết quả:
\[
\frac{6850}{8241} - \frac{1395}{2747}
\]
Tìm mẫu số chung là 8241:
\[
\frac{1395 \times 3}{8241} = \frac{4185}{8241}
\]
Phép trừ giữa hai phân số:
\[
\frac{6850 - 4185}{8241} = \frac{2665}{8241}
\]
Kết quả cuối cùng:
\[
\frac{2665}{8241}
\]
---
d)
Tính toán:
Bước 1: Rút gọn biểu thức phía trên:
\[
\frac{2 \cdot 6^9 - 2^5 \cdot 18^4}{2^2 \cdot 6^8}
\]
Rút gọn \(2\) từ cả tử và mẫu:
\[
\frac{6^9 - 2^4 \cdot 18^4}{2 \cdot 6^8} = \frac{6^9 - 16 \cdot (6^2)^4}{2 \cdot 6^8}
\]
\[
= \frac{6^9 - 16 \cdot 6^8}{2 \cdot 6^8} = \frac{6^8(6 - 16)}{2 \cdot 6^8} = \frac{6 - 16}{2} = \frac{-10}{2} = -5
\]
Kết quả cuối cùng:
\[
-5
\]
---
f)
Tính toán từng phần của biểu thức:
Bước 1: Tính
\[
-\frac{3}{4} + \frac{2}{5}
\]
Tìm mẫu số chung cho 4 và 5 là 20. Rút gọn:
\[
-\frac{15}{20} + \frac{8}{20} = -\frac{7}{20}
\]
Bước 2: Phép chia với \(\frac{3}{7}\):
\[
-\frac{7}{20} \div \frac{3}{7} = -\frac{7}{20} \cdot \frac{7}{3} = -\frac{49}{60}
\]
Bước 3: Tính tiếp với \(\left(\frac{3}{7}\right) + \left(-\frac{1}{4}\right)\):
Rút gọn:
\[
\frac{3}{7} - \frac{1}{4}
\]
Mẫu số chung là 28:
\[
\frac{12}{28} - \frac{7}{28} = \frac{5}{28}
\]
Bước 4: Rút gọn toàn bộ:
\[
-\frac{49}{60} + \frac{5}{28}
\]
Mẫu chung là 420:
\[
-\frac{343}{420} + \frac{75}{420} = -\frac{268}{420} = -\frac{67}{105}
\]
Kết quả cuối cùng:
\[
-\frac{67}{105}
\]
---
h)
Bài toán giống bài b, vì vậy ta sẽ nhận được cùng kết quả là:
\[
\frac{2665}{8241}
\]
Đăng phản hồi
© 2024 Học Tốt Online - Chia Sẻ Tài Liệu Học Tập và Giải Bài Tập Miễn Phí Vietnamese