Tuần 28: Luyện tập chung. Ôn tập về số tự nhiên, phân số - trang 41

2024-09-14 04:53:46

Bài 1

Một đoàn tàu vượt qua một cây cầu dài 1500m hết 2 phút 30 giây. Tính vận tốc của đoàn tàu (km/giờ), biết rằng chiều dài của đoàn tàu là 120m.

Phương pháp giải:

- Tính quãng đường thực tế mà đoàn tàu đi được = độ dài cây cầu + chiều dài đoàn tàu.

- Đổi quãng đường sang đơn vị đo là km và thời gian có đơn vị là giờ.

- Muốn tìm vận tốc ta lấy quãng đường chia cho thời gian.

Lời giải chi tiết:

Quãng đường thực tế đoàn tàu đi được trong 2 phút 30 giây là :

                  \(1500+120 = 1620\;(m)\)

                  \(1620m= 1,620km.\)

Đổi : \(2\) phút \(30\) giây \(= 150\) giây \(=\dfrac{{150}}{{3600}}\) giờ \(= \dfrac{1}{{24}}\) giờ.

Vận tốc của đoàn tàu là:

               \(1,620:\dfrac{1}{{24}} = 38,88\) (km/giờ)

                               Đáp số: \(38,88\) km/giờ.


Bài 2

Viết vào chỗ chấm cho thích hợp:

Một đoàn tàu vượt qua một cây cầu dài 3000m với vận tốc 36km/giờ.

Đoàn tàu vượt qua cây cầu hết thời gian là: …….

Phương pháp giải:

- Đổi quãng đường sang đơn vị đo tương ứng với vận tốc km/giờ là km.

- Muốn tìm thời gian ta lấy quãng đường chia cho vận tốc.

Lời giải chi tiết:

Đổi : \(3000m = 3km\).

Đoàn tàu đó vượt qua cây cầu hết số thời gian là:

            \(3 : 36 = \dfrac{1}{{12}}\) giờ \(= 5\) phút.

                                       Đáp số: \(5\) phút.


Bài 3

Một con chim đại bàng bay trong 2,5 giờ được 225km. Một con kăng-gu-ru di chuyển trong 3 phút được 2520m. Hỏi mỗi phút con vật nào di chuyển nhiều hơn và nhiều hơn bao nhiêu mét?

Phương pháp giải:

- Đổi 225km sang số đo có đơn vị đo là m, đổi 2,5 giờ sang số đo có đơn vị đo là phút.

- Tính trong 1 phút mỗi con di chuyển được bao nhiêu mét, ta lấy quãng đường chia cho thời gian.

- So sánh để xác định mỗi phút con vật nào di chuyển nhiều hơn và nhiều hơn bao nhiêu.

Lời giải chi tiết:

Đổi: 225km = 225000m;  2,5 giờ = 150 phút.

Trong 1 phút con chim đại bàng bay được số mét là:

             \(225000 : 150 = 1500\) (m/phút)

Trong 1 phút con kăng-gu-ru di chuyển được số mét là:

             \(2520 : 3 = 840\) (m/phút)

Mà: \(1500m > 840m\).

Vậy mỗi phút chim đại bàng di chuyển được nhiều hơn và nhiều hơn số mét là:

              \(1500 – 840 = 660\) (m)

Chú ý khi giải: Có thể tìm vận tốc của chim đại bàng theo đơn vị km/giờ, sau đó đổi vận tốc đó sang đơn vị m/phút.


Bài 4

Quãng đường từ Hà Nội đến một địa điểm của một tỉnh khoảng 300km. Một xe ô tô đi từ Hà Nội về địa điểm đó với vận tốc 68km/giờ, một xe ô tô khác đi từ địa điểm đó ra Hà Nội với vận tốc 52km/giờ. Biết hai xe cùng đi trên một đường, hỏi sau bao lâu hai xe gặp nhau ?

Phương pháp giải:

Theo đề bài, hai ô tô xuất phát cùng lúc. Để giải bài này ta làm như sau:

- Tính quãng đường hai xe đi được trong 1 giờ.

- Thời gian đi để gặp nhau bằng quãng đường chia cho quãng đường hai xe đi được trong 1 giờ.

Lời giải chi tiết:

Ta có sơ đồ chuyển động của hai xe như sau:

Quãng đường hai xe đi được trong 1 giờ là :

             \(68 + 52 = 120\; (km)\)          

Thời gian đi để hai xe gặp nhau là:

              \(300 : 120 = 2,5\) (giờ) 

                                Đáp số: \(2,5\) giờ.

[hoctot.me - Trợ lý học tập AI]


Bài 5

Điền dấu (>,<,=) thích hợp vào chỗ chấm:

                 \(345\,687 \ldots 345\,678\)

                 \(9999 \ldots 10\,001\)

                 \(798 \ldots 801\)

                 \(\dfrac{8}{{15}} \ldots \dfrac{7}{{15}}\)

                 \(\dfrac{{14}}{{15}} \ldots \dfrac{7}{{15}}\)

                 \(\dfrac{{15}}{{32}} \ldots \dfrac{{45}}{{96}}\)

Phương pháp giải:

* Áp dụng quy tắc so sánh hai số tự nhiên:

Trong hai số tự nhiên:

- Số nào có nhiều chữ số hơn thì số kia lớn hơn.  Số nào có ít chữ số hơn thì bé hơn.

- Nếu hai số có chữ số bằng nhau thì so sánh từng cặp chữ số ở cùng một hàng kể từ trái sang phải.

* Áp dụng quy tắc so sánh hai phân số có cùng mẫu số:

Trong hai phân số có cùng mẫu số:

- Phân số nào có tử số bé hơn thì phân số đó bé hơn.

- Phân số nào có tử số lớn hơn thì phân số đó lớn hơn.

- Nếu tử số bằng nhau thì hai phân số đó bằng nhau.

* Áp dụng quy tắc so sánh hai phân số khác mẫu số:

Muốn so sánh hai phân số khác mẫu số, ta có thể quy đồng mẫu số hai phân số đó rồi so sánh các tử số của hai phân số mới.

Lời giải chi tiết:

 \(345\,687 > 345\,678\)

                 \(9999 < 10\,001\)

                 \(798 < 801\)

                 \(\dfrac{8}{{15}} > \dfrac{7}{{15}}\)

                 \(\dfrac{{14}}{{15}} > \dfrac{7}{{15}}\)

                 \(\dfrac{{15}}{{32}} = \dfrac{{15 \times 3}}{{32 \times 3}} = \dfrac{{45}}{{96}}\)


Bài 6

Viết chữ số thích hợp vào ô trống để được số:

a) 35 ☐ chia hết cho cả 2 và 5.

b) 67 ☐ chia hết cho cả 2 và 3

c) 76 ☐ chia hết cho cả 9 và 5.

d) 7 ☐ 5 chia hết cho 3 và 5 .

Phương pháp giải:

- Các số có tổng các chữ số chia hết cho 9 thì chia hết cho 9.

- Các số có tổng các chữ số chia hết cho 3 thì chia hết cho 3.

- Các số có chữ số tận cùng là 0 thì chia hết cho cả 2 và 5.

Lời giải chi tiết:

a) Để số 35 ☐ chia hết cho cả 2 và 5 thì chữ số điền vào ô trống là 0.

b) Để số 67 ☐ chia hết cho 3 thì 13 + ☐ chia hết cho 3. Nên chữ số điền vào ô trống có thể là 2; 5; 8.

Để 67 ☐ chia hết cho 2 thì chữ số thích hợp điền vào ô trống là 2 hoặc 8

Vậy chữ số cần tìm là 2 hoặc 8.

c) Để số 76 ☐ chia hết cho 5 thì chữ số cần điền vào ô trống là 0 hoặc 5.

Để số 76 ☐ chia hết cho 9 thì chữ số cần điền vào ô trống là 5.

Vậy chữ số cần tìm là 5

d) Số 7 ☐ 5 có chữ số tận cùng là 5 nên luôn chia hết cho 5.

Để  số 7 ☐ 5 chia hết cho 3 thì 12 + ☐ chia hết cho 3.

Suy ra chữ số điền vào ô trống có thể là 0; 3; 6; 9.


Bài 7

Quy đồng mẫu số các phân số:

\(\dfrac{2}{5}\) và \(\dfrac{3}{4}\) ;                                \(\dfrac{1}{3};\dfrac{3}{5}\) và \(\dfrac{5}{6}\)

Phương pháp giải:

Khi quy đồng mẫu số hai phân số có thể làm như sau:

Lấy tử số và mẫu số của phân số thứ nhất nhân với mẫu số của phân số thứ hai.

Lấy tử số và mẫu số của phân số thứ hai nhân với mẫu số của phân số thứ nhất.

Lời giải chi tiết:

a) Chọn mẫu số chung là 20.

Quy đồng mẫu số hai phân số \(\dfrac{2}{5}\) và \(\dfrac{3}{4}\) ta có:

                \(\dfrac{2}{5} = \dfrac{{2 \times 4}}{{5 \times 4}} = \dfrac{8}{{20}};\)

                \(\dfrac{3}{4} = \dfrac{{3 \times 5}}{{4 \times 5}} = \dfrac{{15}}{{20}}.\)

b) Chọn mẫu số chung là 30.

Quy đồng mẫu số hai phân số \(\dfrac{1}{3};\,\,\dfrac{3}{5}\) và \(\dfrac{5}{6}\) ta có:

                \(\dfrac{1}{3} = \dfrac{{1 \times 10}}{{3 \times 10}} = \dfrac{{10}}{{30}};\)

                \(\dfrac{3}{5} = \dfrac{{3 \times 6}}{{5 \times 6}} = \dfrac{{18}}{{30}};\)

                \(\dfrac{5}{6} = \dfrac{{5 \times 5}}{{6 \times 5}} = \dfrac{{25}}{{30}}\).


Bài 8

Ba điểm A, B, C lần lượt cùng nằm trên một tuyến đường. Một ô tô xanh đi từ B đến C với vận tốc 48km/giờ, cùng lúc đó một ô tô đen đi từ A theo hướng qua B tới C với vận tốc 64km/giờ và đuổi theo ô tô xanh (xem hình dưới đây). Hỏi sau bao lâu ô tô đen đuổi kịp ô tô xanh, biết khoảng cách từ A đến B là 32km?

Phương pháp giải:

Theo đề bài, hai ô tô xuất phát cùng lúc và chuyển động cùng chiều với nhau. Để giải bài này ta làm như sau:

- Tính số ki-lô-mét mỗi giờ ô tô đen gần ô tô xanh.

- Thời gian đi để ô tô đen đuổi kịp ô tô xanh bằng khoảng cách ban đầu giữa hai xe (tức là độ dài quãng đường AB) chia cho số ki-lô-mét mỗi giờ ô tô đen gần ô tô xanh.

Lời giải chi tiết:

Mỗi giờ ô tô đen gần ô tô xanh số ki-lô-mét là:

               \(64 – 48 = 16\;(km)\) 

Ô tô đen đuổi kịp ô tô xanh sau số thời gian là:

               \(32 : 16 = 2\) (giờ)

                                     Đáp số : \(2\) giờ.


Vui học

Buổi sáng, Hùng và Huy cùng chạy tập thể dục xung quanh một bờ hồ có chu vi 1000m (cùng chạy từ một chỗ và cùng một lúc). Nếu hai bạn chạy ngược chiều nhau thì từ lúc xuất phát đến lúc gặp nhau của hai bạn là 3 phút 20 giây, còn nếu chạy cùng chiều nhau thì từ lúc xuất phát đến lúc gặp nhau là 20 phút. Tính vận tốc của mỗi bạn biết Hùng chạy nhanh hơn Huy.

Phương pháp giải:

- Từ công thức tính thời gian đi để hai xe gặp nhau giữa hai xe chuyển động ngược chiều, xuất phát cùng lúc ta suy ra:

Tổng hai vận tốc = Quãng đường : thời gian đi để gặp nhau.

- Từ công thức tính thời gian đi để hai xe gặp nhau giữa hai xe chuyển động cùng chiều, xuất phát cùng lúc ta suy ra:

Hiệu hai vận tốc = Quãng đường : thời gian đi để gặp nhau.

- Áp dụng hai công thức trên ta tìm được tổng và hiệu vận tốc của hai bạn.

- Áp dụng công thức  tìm hai số khi biết tổng và hiệu của hai số đó ta tìm được vận tốc của mỗi bạn:

Số lớn = (Tổng + Hiệu) : 2 ;

Số bé = (Tổng – Hiệu) : 2.

Lời giải chi tiết:

Đổi: \(3\) phút \(20\) giây \(= 3\dfrac{1}{3}\) phút \(= \dfrac{{10}}{3}\) phút.

Tổng vận tốc của hai bạn là

             \(1000 : \dfrac{{10}}{3} = 300\) (m/phút)

Hiệu vận tốc của hai bạn là:

             \(1000 : 20 = 50\) (m/phút)

Vận tốc của Hùng là:

             \((300 + 50) : 2 = 175\) (m/phút)

Vận tốc chạy của Huy là:

            \(300 – 175 = 125\) (m/phút)

                       Đáp số: Hùng: \(175\) m/phút ;

                                    Huy: \(125\) m/phút.

hoctot.me

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"