Giải bài 4.15 trang 73 SGK Toán 7 tập 1 - Kết nối tri thức

2024-09-14 06:16:52

Đề bài

Cho đoạn thẳng AB song song và bằng đoạn thẳng CD như Hình 4.42. Gọi E là giao điểm của hai đường thẳng AD và BC. Hai điểm G và H lần lượt nằm trên AB và CD sao cho G, E, H thẳng hàng. Chứng minh rằng:

a) \(\Delta \)ABE =\(\Delta \)DCE;

b) EG = EH.

Phương pháp giải - Xem chi tiết

Nếu một cạnh và hai góc kề của tam giác này bằng một cạnh và hai góc kề của tam giác kia thì hai tam giác đó bằng nhau.

Lời giải chi tiết

a)Xét hai tam giác ABE và DCE có:

\(\widehat {BAE} = \widehat {CDE}\)(so le trong)

AB=CD(gt)

\(\widehat {ABE} = \widehat {DCE}\)(so le trong)

Vậy \(\Delta \)ABE =\(\Delta \)DCE(g.c.g)

b)Xét hai tam giác BEG và CEH có:

\(\widehat {CEH} = \widehat {BEG}\)(đối đỉnh)

CE=BE (do \(\Delta \)ABE =\(\Delta \)DCE)

\(\widehat {ECH} = \widehat {EBG}\)(so le trong)

Suy ra \(\Delta BEG{\rm{  = }}\Delta CEH\)(g.c.g)

Vậy EG=EH (hai cạnh tương ứng).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"