Đề bài
Tỉ số sản phẩm làm được của hai công nhân là 0,95. Hỏi mỗi người làm được bao nhiêu sản phẩm, biết rằng người này làm nhiều hơn người kia 10 sản phẩm?
Phương pháp giải - Xem chi tiết
Sử dụng tính chất của dãy tỉ số bằng nhau: \(\dfrac{a}{b} = \dfrac{c}{d} = \dfrac{{a - c}}{{b - d}}\)
Lời giải chi tiết
Gọi số sản phẩm 2 người làm được lần lượt là x, y (sản phẩm) (x, y > 0)
Vì người này làm nhiều hơn người kia 10 sản phẩm nên x – y = 10
Vì tỉ số sản phẩm làm được của hai công nhân là 0,95 nên \(\dfrac{y}{x} = 0,95 \Rightarrow 0,95x=y\Rightarrow \dfrac{y}{{0,95}} = \dfrac{x}{1}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\begin{array}{l}\dfrac{x}{1} = \dfrac{y}{{0,95}} = \dfrac{{x - y}}{{1 - 0,95}} = \dfrac{{10}}{{0,05}} = 200\\ \Rightarrow x = 200.1 = 200\\y = 200.0,95 = 190\end{array}\)
Vậy 2 người làm được lần lượt là 200 và 190 sản phẩm.