Giải mục 1 trang 25, 26 SGK Toán 7 tập 2 - Kết nối tri thức

2024-09-14 06:18:19

1. Đơn thức một biến

Câu hỏi 1

Cho biết hệ số và bậc của mỗi đơn thức sau:

a) 2.x6;             b) \( - \dfrac{1}{5}.{x^2}\)     c) -8;    d) 32x

Phương pháp giải:

Đơn thức có dạng tích của một số thực với một lũy thừa của biến.

Số thực gọi là hệ số

Số mũ của lũy thừa của biến gọi là bậc của đơn thức

Lời giải chi tiết:

a) Hệ số: 2

Bậc: 6

b) Hệ số:\( - \dfrac{1}{5}\)

Bậc: 2

c) Hệ số: -8

Bậc: 0

d) Hệ số: 9 ( vì 32 = 9)

Bậc: 1

Chú ý: Đơn thức chỉ gồm số thực khác 0 có bậc là 0


Câu hỏi 2

Khi nhân một đơn thức bậc 3 với một đơn thức bậc 2, ta được đơn thức bậc mấy?

Phương pháp giải:

Muốn nhân 2 đơn thức, ta nhân hai hệ số với nhau và nhân hai lũy thừa của biến với nhau

\({x^m}.{x^n} = {x^{m + n}}\)

Lời giải chi tiết:

Giả sử hai đơn thức đã cho có biến x

Đơn thức bậc 3 có dạng: a.x3

Đơn thức bậc 2 có dạng: b.x2

Nhân 2 đơn thức trên, ta được đơn thức a.x3.b.x2 = (a.b).(x3.x2) = (a.b).x3+2= (a.b). x5

Vậy ta thu được đơn thức bậc 5.


Luyện tập 1

Tính: \(a)5{x^3} + {x^3};b)\dfrac{7}{4}{x^5} - \dfrac{3}{4}{x^5};c)( - 0,25{x^2}).(8{x^3})\)

Phương pháp giải:

+ Muốn cộng (hay trừ) hai đơn thức cùng bậc, ta cộng (hay trừ) các hệ số với nhau, giữ nguyên lũy thừa của biến.

+ Muốn nhân 2 đơn thức, ta nhân hai hệ số với nhau và nhân hai lũy thừa của biến với nhau

Lời giải chi tiết:

\(\begin{array}{l}a)5{x^3} + {x^3} = (5 + 1){x^3} = 6{x^3}\\b)\dfrac{7}{4}{x^5} - \dfrac{3}{4}{x^5} = \left( {\dfrac{7}{4} - \dfrac{3}{4}} \right){x^5} = \dfrac{4}{4}{x^5} = {x^5}\\c)( - 0,25{x^2}).(8{x^3}) = ( - 0,25.8).({x^2}.{x^3}) =  - 2.{x^5}\end{array}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"