Giải mục 1 trang 36, 37 SGK Toán 7 tập 2 - Kết nối tri thức

2024-09-14 06:18:28

1. Nhân đơn thức với đa thức

HĐ 1

Hãy nhắc lại cách nhân hai đơn thức và tính (12x3).(-5x2)

Phương pháp giải:

Muốn nhân 2 đơn thức, ta nhân hai hệ số với nhau và nhân hai lũy thừa của biến với nhau

Lời giải chi tiết:

+ Cách nhân 2 đơn thức: Muốn nhân 2 đơn thức, ta nhân hai hệ số với nhau và nhân hai lũy thừa của biến với nhau.

+ Ta có:

(12x3).(-5x2) = 12. (-5). (x3 . x2) = -60 . x5


HĐ 2

Áp dụng tính chất phân phối của phép nhân đối với phép cộng, hãy tìm tích 2x.(3x2 – 8x + 1) bằng cách nhân 2x với từng hạng tử của đa thức 3x2 – 8x +1 rồi cộng các tích tìm được

Phương pháp giải:

+ Bước 1: Tìm các hạng tử của đa thức 3x2 – 8x +1

+ Bước 2 :  Nhân 2x với từng hạng tử trên

+ Bước 3: Cộng các tích vừa tìm được

Chú ý: a.( b+c+d) = a.b + a.c + a.d

Lời giải chi tiết:

Đa thức 3x2 – 8x +1 có các hạng tử là: 3x2 ; -8x ; 1

Ta có: 2x . 3x2 = (2.3). (x.x2) = 6x3

2x. (-8x) = [2.(-8) ]. (x.x) = -16x2

2x. 1 = 2x

Vậy 2x.(3x2 – 8x + 1) = 6x3 -16x2 + 2x


Luyện tập 1

Tính: (-2x2) . (3x – 4x3 + 7 – x2)

Phương pháp giải:

+ Muốn nhân một đơn thức với một đa thức, ta nhân đơn thức với từng hạng tử của đa thức rồi cộng các tích với nhau.

Lời giải chi tiết:

Ta có: (-2x2) . (3x – 4x3 + 7 – x2)

= (-2x2) . 3x + (-2x2) . (-4x3) + (-2x2)  . 7 + (-2x2) . (-x2)

= [(-2).3] . (x2 . x) + [(-2).(-4)] . (x3 . x2) + [(-2).7] . x2 + [(-2).(-1)] . (x2 . x2)

= -6x3 + 8x5 + (-14)x2 + 2x4

= 8x5 +2x4 -6x3 – 14x2


Vận dụng 1

a) Rút gọn biểu thức P(x) = 7x2 . (x2 – 5x + 2 ) – 5x .(x3 – 7x2 + 3x).

b) Tính giá trị biểu thức P(x) khi x = \( - \dfrac{1}{2}\)

Phương pháp giải:

a) Bước 1: Nhân đơn thức với đa thức: Muốn nhân một đơn thức với một đa thức, ta nhân đơn thức với từng hạng tử của đa thức rồi cộng các tích với nhau.

Bước 2: Trừ 2 đa thức thu được

b) Thay x = \( - \dfrac{1}{2}\) vào P(x)

Lời giải chi tiết:

a) P(x) = 7x2 . (x2 – 5x + 2 ) – 5x .(x3 – 7x2 + 3x)

= 7x2 . x2 + 7x2 . (-5x) + 7x2 . 2 – [5x. x3 + 5x . (-7x2) + 5x . 3x]

= 7. (x2 . x2) + [7.(-5)] . (x2 . x) + (7.2).x2  – {5. (x.x3) + [5.(-7)]. (x.x2) + (5.3).(x.x)}

= 7x4 + (-35). x3 + 14x2  – [ 5x4 + (-35)x3 + 15x2 ]

= 7x4 + (-35). x3 + 14x2   - 5x4 + 35x3 - 15x2

= (7x4 – 5x4) + [(-35). x3 + 35x3 ] + (14x2 - 15x2 )

= 2x4 + 0 - x2 

= 2x4 – x2

b) Thay x = \( - \dfrac{1}{2}\) vào P(x), ta được:

P(\( - \dfrac{1}{2}\)) = 2. (\( - \dfrac{1}{2}\))4 –  (\( - \dfrac{1}{2}\))2 \))

 \(\begin{array}{l} = 2.\dfrac{1}{{16}} - \dfrac{1}{4} \\ = \dfrac{1}{8} - \dfrac{{2}}{8} \\ = \dfrac{-1}{8} \end{array}\)


Thử thách nhỏ

Rút gọn biểu thức x3(x+2) – x(x3 + 23) – 2x(x2 – 22)

Phương pháp giải:

Bước 1: Nhân đơn thức với đa thức: Muốn nhân một đơn thức với một đa thức, ta nhân đơn thức với từng hạng tử của đa thức rồi cộng các tích với nhau.

Bước 2: Trừ các đa thức thu được

Lời giải chi tiết:

Ta có:

x3(x+2) – x(x3 + 23) – 2x(x2 – 22)

= x3 . x + x3 . 2 – (x . x3 + x . 23) – ( 2x . x2 – 2x . 22)

= x4 + 2x3 – (x4 + 8x ) – (2x3 – 8x)

= x4 + 2x3 – x4 – 8x – 2x3 + 8x

= (x4 – x4) + (2x3 – 2x3) + (-8x + 8x)

= 0

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"