3. Chia đa thức cho đa thức, trường hợp chia có dư
HĐ 3
Hãy mô tả lại các bước đã thực hiện trong phép chia đa thức D cho đa thức E
Phương pháp giải:
Mô tả lại các bước tương tự như chia đa thức cho đa thức trường hợp chia hết.
Lời giải chi tiết:
Bước 1: Đặt tính chia tương tự như chia hai số tự nhiên. Lấy hạng tử bậc cao nhất của D chia cho hạng tử bậc cao nhất của E.
Bước 2: Lấy D trừ đi tích của E với thương mới thu được ở bước 1
Bước 3: Lấy hạng tử bậc cao nhất của dư thứ nhất chia cho hạng tử bậc cao nhất của E
Bước 4: Lấy dư thứ nhất trừ đi tích E với thương vừa thu được ở bước 3. Ta được dư thứ hai có bậc nhỏ hơn bậc của E thì quá trình chia kết thúc.
HĐ 4
Kí hiệu dư thứ hai là G = - 6x + 10 . Đa thức này có bậc bằng 1. Lúc này phép chia có thể tiếp tục được không? Vì sao?
Phương pháp giải:
Đa thức bậc n không chia được cho đa thức bậc m (n < m)
Lời giải chi tiết:
Lúc này phép chia không thực hiện được nữa vì bậc của đa thức -6x + 10 (là 1) nhỏ hơn bậc của đa thức chia x2 + 1 (là 2)
HĐ 5
Hãy kiểm tra lại đẳng thức D = E . (5x – 3) + G
Phương pháp giải:
Bước 1: Thực hiện phép nhân đa thức E .(5x – 3)
Bước 2: Thực hiện phép cộng đa thức tìm được ở bước 1 với đa thức G
Nếu kết quả = đa thức D thì đúng
Lời giải chi tiết:
Ta có: E . (5x – 3) + G
= (x2 + 1) . (5x – 3) + (-6x + 10)
= x2 .(5x – 3) + 1. (5x – 3) + (-6x) + 10
= x2 . 5x + x2 . (-3) + 5x – 3 – 6x + 10
= 5x3 – 3x2 + (5x – 6x) + (-3 + 10)
= 5x3 – 3x2 – x + 7
= D
Vậy đẳng thức đúng.
Luyện tập 3
Tìm dư R và thương Q trong phép chia đa thức A= 3x4 – 6x – 5 cho đa thức B = x2 + 3x – 1 rồi viết A dưới dạng A = B . Q + R
Phương pháp giải:
+) Muốn chia đa thức A cho đa thức B, ta làm như sau:
Bước 1: Đặt tính chia tương tự như chia hai số tự nhiên. Lấy hạng tử bậc cao nhất của A chia cho hạng tử bậc cao nhất của B.
Bước 2: Lấy A trừ đi tích của B với thương mới thu được ở bước 1
Bước 3: Lấy hạng tử bậc cao nhất của dư thứ nhất chia cho hạng tử bậc cao nhất của B
Bước 4: Lấy dư thứ nhất trừ đi tích B với thương vừa thu được ở bước 3
Bước 5: Làm tương tự như trên
Đến khi dư cuối cùng có bậc nhỏ hơn bậc của B thì quá trình chia kết thúc.
+) Viết A = B. Q + R
Lời giải chi tiết:
Vậy A = (x2 + 3x – 1) . (3x2 – 9x + 30) -105x + 25
Thử thách nhỏ
Em có biết tại sao Vuông làm nhanh thế không?
Phương pháp giải:
Xét phép chia (A + B) : C với bậc của B nhỏ hơn bậc của C
Nếu A chia C không dư thì số dư của (A + B ) : C là B
Lời giải chi tiết:
Ta có: x3 – 3x2 + x – 1 = (x3 – 3x2 ) + (x -1).
Vì x3 – 3x2 chia cho x2 – 3x không dư ; bậc của x – 1 nhỏ hơn bậc của x2 – 3x nên số dư của phép chia (x3 – 3x2 ) + (x -1) cho x2 – 3x là x – 1
Vậy Vuông làm nhanh và đúng.