HĐ 1
Tìm số thích hợp thay vào dấu “?” trong các câu dưới đây:
a)\({\left( {\frac{1}{3}} \right)^2}.{\left( {\frac{1}{3}} \right)^2} = {\left( {\frac{1}{3}} \right)^?}\) b)\({\left( {0,2} \right)^2}.{\left( {0,2} \right)^3} = {\left( {0,2} \right)^?}\).
Phương pháp giải:
Áp dụng định nghĩa: \({x^n} = x.x.x...x\)(n thừa số)
Lời giải chi tiết:
a) Ta có:
\({\left( {\frac{1}{3}} \right)^2}.{\left( {\frac{1}{3}} \right)^2} = \frac{1}{3}.\frac{1}{3}.\frac{1}{3}\frac{1}{3} = {\left( {\frac{1}{3}} \right)^4}\)
b)
\({\left( {0,2} \right)^2}.{\left( {0,2} \right)^3} = \left( {0,2.0,2} \right).\left( {0,2.0,2.0,2} \right) = {\left( {0,2} \right)^5}\)
Thực hành 2
Tính:
a)\({\left( { - 2} \right)^2}.{\left( { - 2} \right)^3}\);
b)\({\left( { - 0,25} \right)^7}:{\left( { - 0,25} \right)^5}\);
c)\({\left( {\frac{3}{4}} \right)^4}.{\left( {\frac{3}{4}} \right)^3}.\)
Phương pháp giải:
Áp dụng quy tắc nhân, chia hai lũy thừa cùng cơ số:
\({x^m}.{x^n} = {x^{m + n}}\)
\({x^m}:{x^n} = {x^{m - n}}\,\left( {x \ne 0,\,m \ge n} \right)\)
Lời giải chi tiết:
a)\({\left( { - 2} \right)^2}.{\left( { - 2} \right)^3} = {\left( { - 2} \right)^{2 + 3}} = {\left( { - 2} \right)^5}\);
b)\({\left( { - 0,25} \right)^7}:{\left( { - 0,25} \right)^5} = {\left( { - 0,25} \right)^{7 - 5}} = {\left( { - 0,25} \right)^2} = {\left( {0,25} \right)^2}\);
c)\({\left( {\frac{3}{4}} \right)^4}.{\left( {\frac{3}{4}} \right)^3} = {\left( {\frac{3}{4}} \right)^{4 + 3}} = {\left( {\frac{3}{4}} \right)^7}.\)