HĐ 1
Cho hai máy tính xách tay (laptop) có kích thước màn hình (tính theo đơn vị mm) lần lượt là 227,6 × 324 và 170,7 × 243. Tính tỉ số giữa chiều rộng và chiều dài của mỗi màn hình.
Phương pháp giải:
- Thực hiện lập các tỉ số giữa chiều dài và chiều rộng màn hình mỗi máy tính theo dạng phân số
Lời giải chi tiết:
Xét tỉ số giữa chiều dài và chiều rộng của máy tính thứ nhất là : \(\dfrac{{227,6}}{{324}}\)
Tỉ số giữa chiều dài và chiều rộng của máy tính thứ hai là : \(\dfrac{{170,7}}{{243}}\)
Thực hành 1
a) Từ các tỉ số \(\dfrac{6}{5}:2\) và \(\dfrac{{12}}{5}:4\) có lập được một tỉ lệ thức hay không?
b) Hãy lập hai tỉ lệ thức từ bốn số 9;2;3;6.
Phương pháp giải:
a) Thực hiện các phép tính để tối giản thành 2 tỉ số và xem có thể lập tỉ lệ thức được không
b) Lập các tỉ số từ các số đã cho sao cho 2 tỉ số bằng nhau sẽ có thể lập được các tỉ lệ thức .
Lời giải chi tiết:
a) Ta xét tỉ số \(\dfrac{6}{5}:2 = \dfrac{6}{5}.\dfrac{1}{2} = \dfrac{6}{{10}} = \dfrac{3}{5}\)
Tương tự xét với tỉ số \(\dfrac{{12}}{5}:4 = \dfrac{{12}}{5}.\dfrac{1}{4} = \dfrac{{12}}{{20}} = \dfrac{{12:4}}{{20:4}} = \dfrac{3}{5}\)
Ta thấy các tỉ số đều bằng \(\dfrac{3}{5}\) nên ta sẽ lập được một tỉ lệ thức : \(\dfrac{{12}}{5}:4\) = \(\dfrac{6}{5}:2\)
b) Từ các số 9;2;3;6 ta thấy :
\(\dfrac{9}{3}\)= 3 và \(\dfrac{6}{2}\)=3 nên suy ra ta có tỉ lệ thức thứ nhất : \(\dfrac{9}{3}\)=\(\dfrac{6}{2}\)
Ta xét tỉ số \(\dfrac{9}{6}\)=\(\dfrac{{9:3}}{{6:3}}\)=\(\dfrac{3}{2}\)nên ta có được tỉ lệ thức thứ hai : \(\dfrac{9}{6}\)=\(\dfrac{3}{2}\)
Vận dụng 1
Chứng minh các tỉ số giữa chiều rộng và chiều dài của màn hình hai loại máy tính đã nêu trong HĐ 1 sẽ tạo thành 1 tỉ lệ thức.
Phương pháp giải:
- So sánh tỉ số giữa chiều dài và chiều rộng của màn hình 2 loại máy tính nếu các tỉ số đó bằng nhau ta sẽ được một tỉ lệ thức .
Lời giải chi tiết:
Xét tỉ số giữa chiều dài và chiều rộng của máy tính thứ nhất là : \(\dfrac{{227,6}}{{324}}\)
Tỉ số giữa chiều dài và chiều rộng của máy tính thứ hai là : \(\dfrac{{170,7}}{{243}}\)
Để 2 tỉ số bằng nhau \( \Leftrightarrow \) \(\dfrac{{227,6}}{{324}}\)-\(\dfrac{{170,7}}{{243}}\)= 0
Ta thấy ước chung lớn nhất của 324 và 243 là 81 nên ta sẽ chia cả tử và mẫu của 2 phân số để mẫu số chung là 81
\(\begin{array}{l} \Rightarrow \dfrac{{227,6:4}}{{324:4}} - \dfrac{{170,7:3}}{{243:3}} = 0\\ \Leftrightarrow \dfrac{{56,9}}{{81}} - \dfrac{{56,9}}{{81}} = 0\end{array}\)
Ta thấy 2 tỉ số bằng nhau vì sau khi rút gọn và trừ đi được kết quả là 0
\( \Rightarrow \) 2 tỉ số chiều dài và chiều rộng màn hình của mỗi loại máy tính là bằng nhau nên sẽ tạo thành một tỉ lệ thức .
HĐ 2
a) Từ tỉ lệ thức \(\dfrac{{48}}{{64}} = \dfrac{9}{{12}}\), ta nhân cả hai vế với 64.12 thì có kết quả gì?
b) Từ tỉ lệ thức \(\dfrac{a}{b} = \dfrac{c}{d}\), ta nhân cả hai vế với b.d thì có kết quả gì?
Phương pháp giải:
a) Nhân hai vế với 64.12
b) Từ câu a ta rút ra mối quan hệ khi nhân 2 vế với b.d
Lời giải chi tiết:
a) \(\dfrac{{48}}{{64}} = \dfrac{9}{{12}}\)ta nhân cả 2 vế cho 64.12 được : \(\dfrac{{48}}{{64}}.(64.12) = \dfrac{9}{{12}}.(64.12)\)
\( \Rightarrow \)\(\dfrac{{48.64.12}}{{64}} = \dfrac{{9.64.12}}{{12}}\)\( \Rightarrow \)\(48.12\)= \(9.64\) \( \Leftrightarrow \) 576 = 48.12 = 9.64
\( \Rightarrow \) Ta thấy nhân cả 2 vế với 64.12 ta được 2 vế sau khi rút gọn bằng nhau
b) \(\dfrac{a}{b} = \dfrac{c}{d}\) nhân cả 2 vế với b.d ta có : \(\dfrac{{a \cdot b \cdot d}}{b} = \dfrac{{c \cdot b.d}}{d}\) sau khi rút gọn cả 2 vế ta được : a.b = c.d
HĐ 3
Từ đẳng thức 48.12 = 64.9, ta chia cả hai vế cho 64.12 thì có kết quả gì?
Từ đẳng thức ad = cb, ta chia cả hai vế cho bd thì có kết quả gì?
Phương pháp giải:
- Thực hiện nhân chia 2 vế cho 64.12 và rút gọn kết quả cuối cùng của 2 vế
- So sánh 2 vế từ đó rút ra được kết quả của đẳng thức ab = cd
Lời giải chi tiết:
- Ta nhân rồi chi cả 2 vế cho 64.12
48 . 12 = 576 ta lấy 576 : (64 . 12) = \(\dfrac{{576}}{{768}}\) ta thấy ước chung lớn nhất của tử và mẫu là 192 nên ta rút gọn phân số \(\dfrac{{576:192}}{{768:192}} = \dfrac{3}{4}\)
Xét vế trái 64 . 9 = 576 ta lấy 567 : (64 . 12) = \(\dfrac{{576}}{{768}} = \dfrac{3}{4}\)
Như vậy sau khi chia cả 2 vế cho 64 . 12 ta được kết quả là cả 2 vế bằng nhau và cùng bằng \(\dfrac{3}{4}\)
- Từ đẳng thức ad = cb ta chia cả 2 vế cho bd sẽ được \(\dfrac{{ad}}{{bd}} = \dfrac{{bc}}{{bd}} \Leftrightarrow \dfrac{a}{b} = \dfrac{c}{d}\)
Thực hành 2
Tìm x trong tỉ lệ thức \(\dfrac{5}{3} = \dfrac{x}{9}\)
Phương pháp giải:
- Sử dụng tính chất \(\dfrac{a}{b} = \dfrac{c}{d}\)thì ad = bc
Lời giải chi tiết:
Ta có : \(\dfrac{5}{3} = \dfrac{x}{9} \Rightarrow 5.9 = 3x \Leftrightarrow 45 = 3x \Rightarrow x = 45:3\)
\( \Rightarrow \) x = 15
Vậy x = 15
Vận dụng 2
Hãy viết một tỉ lệ thức từ đẳng thức x = 2y.
Phương pháp giải:
- Sử dụng tính chất \(\dfrac{a}{b} = \dfrac{c}{d}\)thì ad = bc
Lời giải chi tiết:
Ta có đẳng thức : x = 2y
\( \Rightarrow \)1 . x = 2y
\( \Rightarrow \)\(\dfrac{2}{x} = \dfrac{1}{y}\) hoặc \(\dfrac{1}{2} = \dfrac{y}{x}\) hoặc \(\dfrac{2}{1} = \dfrac{x}{y}\)\( \Leftrightarrow \)\(2 = \dfrac{x}{y}\) hoặc \(\dfrac{x}{2} = \dfrac{1}{y}\)
Vậy từ đẳng thức : x = 2y ta sẽ viết được 4 tỉ lệ thức .