HĐ 1
Hãy lập biểu thức biểu thị tổng chu vi hình vuông (Hình 1a) và hình chữ nhật (Hình 1b).
Phương pháp giải:
Chu vi hình vuông là: 4. Cạnh
Chu vi hình chữ nhật là: 2.(chiều dài + chiều rộng)
Lời giải chi tiết:
Chu vi hình vuông là \(4x\)
Chu vi hình chữ nhật là \(2.[x+(x + 1)]\)
\( \Rightarrow \) Tổng chu vi 2 hình là : \({4x}+2.[x.(x + 1)] = 4x + 2(2x+1) = 4x +4x + 2 = 8x+2\)
Thực hành 1
Cho hai đa thức P(x) = \(7{x^3} - 8x + 12\) và Q(x) = \(6{x^2} - 2{x^3} + 3x - 5\). Hãy tính P(x) + Q(x) bằng hai cách.
Phương pháp giải:
Cách 1: Nhóm các đơn thức cùng lũy thừa rồi thực hiện phép cộng
Cách 2: Sắp xếp đa thức theo bậc giảm dần rồi đặt tính cộng sao cho các hạng tử cùng bậc đặt thẳng cột với nhau rồi cộng theo từng cột.
Lời giải chi tiết:
Cách 1:
P(x) + Q(x) = \(7{x^3} - 8x + 12 + 6{x^2} - 2{x^3} + 3x - 5\)
\(\begin{array}{l} = (7{x^3} - 2{x^3}) + 6{x^2} + ( - 8x + 3x) + (12 - 5)\\ = 5{x^3} + 6{x^2} - 5x + 7\end{array}\)
Cách 2: