HĐ 3
Quan sát tam giác AHB ở Hình 6.
a) Hãy cho biết trong hai góc AHB và ABH, góc nào lớn hơn
b) Từ câu a, hãy giải thích vì sao AB > AH.
Phương pháp giải:
- Ta sử dụng định lí về tổng số đo 3 góc trong 1 tam giác.
- Ta sử dụng định lí: Trong tam giác, góc đối diện với cạnh lớn hơn thì lớn hơn.
Lời giải chi tiết:
a) Xét tam giác AHB vuông tại H ( theo giả thiết )
\( \Rightarrow \widehat {ABH} + \widehat {HAB} = {90^o}\)
\( \Rightarrow \widehat {AHB} > \widehat {ABH}\)( Do \(\widehat {AHB} = {90^o}\) và \(\widehat {ABH} < {90^o}\))
b) Xét tam giác AHB có:
\(\widehat {AHB} > \widehat {ABH}\)( chứng minh a )
Mà \(\widehat {AHB}\) đối diện với cạnh AB, \(\widehat {ABH}\) đối diện với cạnh AH.
\( \Rightarrow AB > AH\)
Thực hành 2
Trong Hình 8, tìm đường vuông góc và đường xiên kẻ từ điểm A đến đường thẳng BF. Trong số các đường này, đường nào ngắn nhất ?
Phương pháp giải:
Sử dụng tính chất trong các đoạn thẳng nối từ 1 điểm ở ngoài một đường thẳng đến các điểm trên đường thẳng đó, đường vuông góc luôn ngắn hơn tất cả các đường xiên
Lời giải chi tiết:
Theo hình 8 ta thấy AD là đường ngắn nhất vì AD vuông góc với BF
Các đường xiên là AB, AC, AE, AF.
Vận dụng 2
Bạn Minh xuất phát từ điểm M bên hồ bơi (Hình 9). Bạn ấy muốn tìm đường ngắn nhất để bơi đến thành hồ đối diện. Theo em, bạn Minh phải bơi theo đường nào ?
Phương pháp giải:
Sử dụng tính chất trong các đoạn thẳng nối từ 1 điểm ở ngoài một đường thẳng đến các điểm trên đường thẳng đó, đường vuông góc luôn ngắn hơn tất cả các đường xiên.
Lời giải chi tiết:
Ta gọi thành hồ bơi đối diện là đường thẳng AD
Bạn Minh bơi đường ngắn nhất khi bơi từ điểm M 1 đường vuông góc với AD do đoạn thẳng nối từ 1 điểm ở ngoài một đường thẳng đến các điểm trên đường thẳng đó, đường vuông góc luôn ngắn hơn tất cả các đường xiên .
Ta thấy AM vuông góc AD nên AM là đường ngắn nhất