HĐ 1
Lấy một mảnh giấy như trong Hình 1a, gọi một mép cắt là đoạn thẳng AB. Sau đó gấp mảnh giấy sao cho điểm A trùng với điểm B (Hình 1b)
Theo em nếp gấp xy có vuông góc với đoạn AB tại trung điểm hay không? Tại sao?
Phương pháp giải:
- Gấp theo hướng dẫn
Lời giải chi tiết:
Sau khi gấp A trùng với B thì điểm gấp trên cạnh AB là O
\( \Rightarrow \) AO = BO \( \Rightarrow \)O là trung điểm AB
Vì 2 mép của tờ giấy song song với nhau nên khi gấp đôi đường gấp ở giữa (xy) cũng song song với 2 cạnh của tờ giấy .
Mà 2 cạnh của tờ giấy vuông góc với AB nên xy cũng vuông góc với AB
Thực hành 1
Cho hình chữ nhật ABCD, trên cạnh AB lấy các điểm M, N, P và trên cạnh DC lấy các điểm M’, N’, P’. Cho biết AM = MN = NP = PB và MM’, NN’, PP’ đều song song với BC (Hình 3). Tìm đường trung trực của mỗi đoạn thẳng AB, AN và NB.
Phương pháp giải:
- Dựa vào định nghĩa của đường trung trực
Lời giải chi tiết:
Đường trung trực của AB là NN’ vì NN' vuông góc với AB tại trung điểm N của AB.
Đường trung trực của AN là MM’ vì MM' vuông góc với AN tại trung điểm M của AN.
Đường trung trực của NB là PP’ vì PP' vuông góc với NB tại trung điểm P của NB.
Vận dụng 1
Trong Hình 4, hãy cho biết BD có là đường trung trực của đoạn thẳng AC hay không? Tại sao?
Phương pháp giải:
- Chứng minh P là trung điểm AC
- Chứng minh BD vuông góc với AC
Lời giải chi tiết:
Theo giả thiết ta có P là trung điểm AC
Xét tam giác APD và tam giác CPD có :
AP = PC ( theo giả thiết )
DP cạnh chung
AD = CD ( theo giả thiết )
Suy ra t\(\Delta APD = \Delta CPD (c-c-c)\)
\( \Rightarrow \widehat {CPD} = \widehat {APD}\) (2 góc tương ứng )
Mà 2 góc ở vị trí kề bù \( \Rightarrow \widehat {CPD} = \widehat {APD} = {90^o}\)\( \Rightarrow AC \bot BD\) và P là chung điểm AC do AP = PC
\( \Rightarrow \) BD là đường trung trực của AC