Giải bài 2 trang 78 SGK Toán 7 tập 2 - Chân trời sáng tạo

2024-09-14 06:24:03

Đề bài

Cho tam giác ABC vuông tại A. Trên tia BA lấy điểm M sao cho BM = BC. Tia phân giác của góc B cắt AC tại H. Chứng minh rằng MH vuông góc với BC.

Phương pháp giải - Xem chi tiết

- Ta chứng minh H là trực tâm của tam giác AMC

-  Từ đó ta chứng minh MH vuông góc với BC

Lời giải chi tiết

Gọi D giao điểm của tia phân giác của góc B và MC

Xét tam giác BDM và tam giác BDC có :

BD chung

\(\widehat {MBD} = \widehat {CBD}\) ( BD là phân giác của góc B)

BM = BC ( giả thiết )

( \Rightarrow \Delta BDM=\Delta BDC\)(c.g.c)

\( \Rightarrow \widehat {BDM} = \widehat {BDC}\)(2 góc tương ứng)

Mà 2 góc ở vị trí kề bù \( \Rightarrow \widehat {BDM} = \widehat {BDC} = {90^o} \Rightarrow BD \bot CM\)

Mà AC cắt BD tại H \( \Rightarrow \) H là trực tâm tam giác BMC

\( \Rightarrow \) MH là đường cao của tam giác BMC (định lí 3 đường cao đi qua trực tâm tam giác)

\( \Rightarrow \) MH vuông góc với BC

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"