Giải Bài 5 trang 84 SGK Toán 7 tập 2 - Chân trời sáng tạo

2024-09-14 06:24:15

Đề bài

Cho tam giác nhọn ABC (AB < AC), vẽ đường cao AH. Đường trung trực của BC cắt AC tại M, cắt BC tại N.

a) Chứng minh rằng \(\widehat {BMN} = \widehat {HAC}\)

b) Kẻ \(MI \bot AH\)(I ∈ AH), gọi K là giao điểm của AH và BM. Chứng minh rằng I là trung điểm của AK.

Phương pháp giải - Xem chi tiết

a) Ta xét tam giác BMC cân tại M nên \(\widehat {MBC} = \widehat {MCB}\)

Nên \(\widehat {BMN} = \widehat {HAC} = {90^o} - \widehat {MBC} = {90^o} - \widehat {MBC}\)

b) Ta chứng minh I là trung điểm của AK do \(\Delta MAI = \Delta MKI\)(g-c-g) 

Lời giải chi tiết

a) Ta xét tam giác BMC cân tại M nên \(\widehat {MBC} = \widehat {MCB}\)

Nên \(\widehat {BMN} = \widehat {HAC} = {90^o} - \widehat {MBC} = {90^o} - \widehat {MBC}\)

b) Ta chứng minh I là trung điểm của AK do \(\Delta MAI = \Delta MKI\)(g-c-g)

Lời giải :

a)      Xét tam giác BMC cân tại M (Do M thuộc đường trung trực của BC nên MB = MC) có : \(\widehat {MBC} = \widehat {MCB}\)(góc tương ứng)

Mà \(\widehat {BMN} = {90^o} - \widehat {MBC}\)và \(\widehat {HAC} = {90^o} - \widehat {BCM}\)

\( \Rightarrow \)\(\widehat {BMN} = \widehat {HAC}\)

b)      Ta có MN⫽AH (do cùng vuông góc với BC)

\( \Rightarrow \widehat {AKM} = \widehat {KMN}\)(2 góc so le trong)

Mà \(\widehat {BMN} = \widehat {HAC}\)( chứng minh a)

\( \Rightarrow \widehat {KAM} = \widehat {AKM}\)( do cùng =\(\widehat {BMN}\))

Xét \(\Delta MIA\) và \(\Delta MIK\)có :

IM cạnh chung

\(\widehat {KAM} = \widehat {AKM}\)

\(\widehat {AIM} = \widehat {MIK} = {90^o}\)

\( \Rightarrow \Delta MIA = \Delta MIK\)(cạnh góc vuông-góc nhọn)

\( \Rightarrow \)AI = IK (cạnh tương ứng)

\( \Rightarrow \)I là trung điểm AK

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"