Giải Bài 1 trang 84 SGK Toán 7 tập 2 - Chân trời sáng tạo

2024-09-14 06:24:17

Đề bài

Cho tam giác ABC cân tại A (\(\widehat A < {90^o}\)). Hai đường cao BE và CF cắt nhau tại H.

a) Chứng minh rẳng \(\Delta BFC = \Delta CEB\)

b) Chứng minh rằng \(\Delta AEH = \Delta AFH\)

c) Gọi I là trung điểm BC. Chứng minh rằng ba điểm A,H,I thẳng hàng.

Phương pháp giải - Xem chi tiết

a) Ta sử dụng định lí cạnh huyền – góc nhọn trong tam giác vuông

b) Từ câu a ta chứng minh 2 tam giác AHF = tam giác AHE nhờ những cạnh của 2 tam giác chứng minh được bằng nhau từ câu trên

c) Ta chứng minh AI và AH cùng là phân giác của góc A

Lời giải chi tiết

a) Xét \(\Delta BFC\) và \(\Delta CEB\) có:

BC là cạnh chung

\(\widehat B = \widehat C\)(\(\Delta ABC\) cân tại A)

\(\widehat {BEC} = \widehat {CFB} = {90^o}\)

\( \Rightarrow \Delta BFC = \Delta CEB\)(cạnh huyền – góc nhọn )

b) Vì \(\Delta BFC = \Delta CEB \Rightarrow \) BF = EC (2 cạnh tương ứng)

Mà AB = AC (\(\Delta ABC\) cân tại A)

\( \Rightarrow \) AF = AE (AB – BF = AC – EC )

Xét \(\Delta AEH\) và \(\Delta AFH\)ta có :

AF = AE (chứng minh trên)

AH cạnh chung

\(\widehat {HFA} = \widehat {HEA} = {90^o}\)

\( \Rightarrow \Delta AEH = \Delta AFH\)(cạnh huyền - cạnh góc vuông)

c) Vì CF, BE là những đường cao của tam giác ABC và H là giao điểm của chúng

\( \Rightarrow \) H là trực tâm của tam giác ABC

\( \Rightarrow \) AH vuông góc với BC (1)

Xét \(\Delta AIC\) và \(\Delta AIB\) có :

IB = IC (I là trung điểm BC)

AI là cạnh chung

AB = AC ( tam giác ABC cân tại A)

\( \Rightarrow \Delta AIC = \Delta AIB(c - c - c)\)

\( \Rightarrow \widehat {AIC} = \widehat {AIB}\) (2 góc tương ứng) Mà chúng ở vị trí kề bù \( \Rightarrow \widehat {AIC} = \widehat {AIB} = {90^o}\)\( \Rightarrow AI \bot BC\) (2)

Từ (1) và (2) \( \Rightarrow \) A, H, I thẳng hàng.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"