Giải mục II trang 18, 19 SGK Toán 7 tập 1 - Cánh diều

2024-09-14 06:24:48

Hoạt động 2

Viết kết quả của mỗi phép tính sau dưới dạng một lũy thừa:

a)\({2^m}{.2^n}\)                      b)\({3^m}:{3^n}\) với \(m \ge n\)

Phương pháp giải:

Sử dụng định nghĩa lũy thừa của một số hữu tỉ \({x^m}=x.x....x\) ( m thừa số \(x\))

Lời giải chi tiết:

a) \({2^m}{.2^n}=\underbrace {2.2 \ldots .2}_{m{\rm{ }}}{\rm{ }}.\underbrace {2.2 \ldots .2}_{n{\rm{ }}}{\rm{ }}\) = 2m+n

b) \({3^m}:{3^n}=(\underbrace {3.3 \ldots .3}_{m{\rm{ }}}{\rm{ }}):(\underbrace {3.3 \ldots .3}_{n{\rm{ }}}{\rm{ }})\) = 3m-n  với \(m \ge n\)


Luyện tập vận dụng 3

Viết kết quả của mỗi phép tính sau dưới dạng một lũy thừa:

a)\(\frac{6}{5}.{\left( {1,2} \right)^8};\)

b)\({\left( {\frac{{ - 4}}{9}} \right)^7}:\frac{{16}}{{81}}\)

Phương pháp giải:

Viết các số dưới dạng lũy thừa với số mũ tự nhiên

\(\begin{array}{l}{x^m}.{x^n} = {x^{m + n}}\left( {m,n \in \mathbb{N}} \right)\\{x^m}:{x^n} = {x^{m - n}}\left( {x \ne 0;m \ge n;\,m,n \in \mathbb{N}} \right)\end{array}\)

Lời giải chi tiết:

a)  \(\frac{6}{5}.{\left( {1,2} \right)^8} = 1,2.{(1,2)^8} = {(1,2)^{1 + 8}} = {(1,2)^9}\)

b) \({\left( {\frac{{ - 4}}{9}} \right)^7}:\frac{{16}}{{81}} = {\left( {\frac{{ - 4}}{9}} \right)^7}:{\left( {\frac{{ - 4}}{9}} \right)^2} = {\left( {\frac{{ - 4}}{9}} \right)^{7 - 2}} = {\left( {\frac{{ - 4}}{9}} \right)^5}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"