Luyện tập vận dụng 1
Tính giá trị của mỗi biểu thức sau:
a) \(0,2 + 2,5:\frac{7}{2}\)
b) \(9.{\left( {\frac{{ - 1}}{3}} \right)^2} - {\left( { - 0,1} \right)^3}:\frac{2}{{15}}\)
Phương pháp giải:
Thực hiện phép tính theo thứ tự: Lũy thừa => Nhân, chia => Cộng trừ.
Lời giải chi tiết:
a) \(0,2 + 2,5:\frac{7}{2} = \frac{2}{{10}} + \frac{25}{10}:\frac{7}{2} = \frac{1}{5} + \frac{25}{10}.\frac{2}{7} \\= \frac{1}{5} + \frac{5}{7} = \frac{7}{{35}} + \frac{{25}}{{35}} = \frac{{32}}{{35}}\)
b)
\(\begin{array}{l}9.{\left( {\frac{{ - 1}}{3}} \right)^2} - {\left( { - 0,1} \right)^3}:\frac{2}{{15}}\\ = 9.\frac{1}{9} - {\left( {\frac{{ - 1}}{{10}}} \right)^3}:\frac{2}{{15}}\\ = 1 - \frac{{ - 1}}{{1000}}:\frac{2}{{15}}\\ = 1 - \frac{{ - 1}}{{1000}}.\frac{{15}}{2}\\ = 1 + \frac{3}{{400}}\\=\frac{400}{400}+\frac{3}{400}\\ = \frac{{403}}{{400}}\end{array}\)
Luyện tập vận dụng 2
Tính giá trị của mỗi biểu thức sau:
a) \(\left( {0,25 - \frac{5}{6}} \right).1,6 + \frac{{ - 1}}{3}\)
b) \(3 - 2.\left[ {0,5 + \left( {0,25 - \frac{1}{6}} \right)} \right]\)
Phương pháp giải:
Thực hiện phép tính theo thứ tự ngoặc ( ) =>[ ] và nhân (chia) trước cộng (trừ) sau.
Lời giải chi tiết:
a)
\(\begin{array}{l}\left( {0,25 - \frac{5}{6}} \right).1,6 + \frac{{ - 1}}{3}\\ =(\frac{25}{100}-\frac{5}{6}).\frac{16}{10}+\frac{-1}{3}\\= \left( {\frac{1}{4} - \frac{5}{6}} \right).\frac{8}{5} + \frac{{ - 1}}{3}\\ = \left( {\frac{6}{{24}} - \frac{{20}}{{24}}} \right).\frac{8}{5} + \frac{{ - 1}}{3}\\ = \frac{{ - 14}}{{24}}.\frac{8}{5} + \frac{{ - 1}}{3}\\ = \frac{{ - 14}}{{15}} + \frac{{ - 1}}{3}\\ = \frac{{ - 14}}{{15}} + \frac{{ - 5}}{{15}}\\ = \frac{{ - 19}}{{15}}\end{array}\)
b)
\(\begin{array}{l}3 - 2.\left[ {0,5 + \left( {0,25 - \frac{1}{6}} \right)} \right]\\ = 3 - 2.\left[ {\frac{1}{2} + \left( {\frac{1}{4} - \frac{1}{6}} \right)} \right]\\ = 3 - 2.\left( {\frac{1}{2} + \frac{1}{{12}}} \right)\\ =3-2.(\frac{6}{12}+\frac{1}{12})\\= 3 - 2.\frac{7}{{12}}\\ = 3 - \frac{7}{6}\\=\frac{18}{6}-\frac{7}{6}\\ = \frac{{11}}{6}\end{array}\)