Giải bài 2 trang 91 SGK Toán 7 tập 2 - Cánh diều

2024-09-14 06:28:06

Đề bài

Cho Hình 65AM = BN, \(\widehat A = \widehat B\). Chứng minh: OA = OB, OM = ON.

Phương pháp giải - Xem chi tiết

Chứng minh tam giác AOM bằng tam giác BON.

Lời giải chi tiết

Ta có: \(\widehat A = \widehat B\)

Mà 2 góc này ở vị trí so le trong nên AM // BN

\(\Rightarrow \widehat M = \widehat N\)(2 góc so le trong).

Xét hai tam giác AOMBON có: \(\widehat A = \widehat B\), AM = BN, \(\widehat M = \widehat N\).

Vậy \(\Delta AOM = \Delta BON\) (g.c.g)

Do đó OA = OB, OM = ON. (2 cạnh tương ứng).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

We using AI and power community to slove your question

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"