Giải bài 2 trang 103 SGK Toán 7 tập 2 - Cánh diều

2024-09-14 06:28:22

Đề bài

Trong Hình 95, đường thẳng a là đường trung trực của hai đoạn thẳng ABCD. Chứng minh:

 

a) AB // CD;

b) \(\Delta MNC = \Delta MND;\)

c) \(\widehat {AMD} = \widehat {BMC}\);

d) \(AD = BC,\widehat A = \widehat B\);

e) \(\widehat {ADC} = \widehat {BCD}\).

Phương pháp giải - Xem chi tiết

a) Chứng minh AB // CD bằng cách dựa vào đường thẳng a là đường trung trực của cả hai đoạn thẳng ABCD.

b) Chứng minh \(\Delta MNC = \Delta MND\) theo trường hợp cạnh huyền – cạnh góc vuông.

c) Dựa vào kết quả của phần b) để chứng minh \(\widehat {AMD} = \widehat {BMC}\).

d) Chứng minh \(AD = BC,\widehat A = \widehat B\) dựa vào cách chứng minh \(\Delta MAD = \Delta MBC\).

e) Chứng minh \(\widehat {ADC} = \widehat {BCD}\) dựa vào kết quả của phần d).

Lời giải chi tiết

a) Ta có: đường thẳng a là đường trung trực của đoạn thẳng ABCD nên \(a \bot AB;a \bot CD\).

Suy ra: AB // CD.

b) Đường thẳng a là đường trung trực của đoạn thẳng ABCD nên MN là đường trung trực của đoạn thẳng ABCD. Suy ra: MD = MC.

Xét tam giác vuông MNC và tam giác vuông MND có: ND = NC; MD = MC.

Vậy \(\Delta MNC = \Delta MND\)(cạnh huyền – cạnh góc vuông).

c) \(\Delta MNC = \Delta MND\)nên \(\widehat {CMN} = \widehat {DMN}\).

Mà \(\widehat {AMN} = \widehat {BMN} = 90^\circ \Rightarrow \widehat {AMN} - \widehat {DMN} = \widehat {BMN} - \widehat {CMN}\).

Vậy \(\widehat {AMD} = \widehat {BMC}\).

d) Xét hai tam giác AMDBMC có:

     MA = MB;

     \(\widehat {AMD} = \widehat {BMC}\);

     MD = MC.

Vậy \(\Delta MAD = \Delta MBC\)(c.g.c). Suy ra: \(AD = BC,\widehat A = \widehat B\) (cặp cạnh và góc tương ứng).

e) \(\Delta MAD = \Delta MBC\) nên \(\widehat {ADM} = \widehat {BCM}\) (2 góc tương ứng).

\(\Delta MNC = \Delta MND\) nên \(\widehat {MCN} = \widehat {MDN}\) (2 góc tương ứng).

Vậy \(\widehat {ADM} + \widehat {MDN} = \widehat {BCM} + \widehat {MCN}\) hay \(\widehat {ADC} = \widehat {BCD}\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"