Giải bài 4 trang 119 SGK Toán 7 tập 2 - Cánh diều

2024-09-14 06:28:58

Đề bài

Cho hai tam giác ABCMNP có: AB = MN, BC = NP, CA = PM. Gọi I K lần lượt là trung điểm của BCNP. Chứng minh AI = MK.

Phương pháp giải - Xem chi tiết

Chứng minh AI = MK bằng cách chứng hai tam giác ABIMNK bằng nhau.

Lời giải chi tiết

Hai tam giác ABCMNP có: AB = MN, BC = NP, CA = PM nên \(\Delta ABC = \Delta MNP\)(c.c.c)

Suy ra: \(\widehat {ABI} = \widehat {MNK}\) ( 2 góc tương ứng).

Ta có: I, K lần lượt là trung điểm của BCNPBC = NP, suy ra: \(BI = NK\).

Xét tam giác ABI và tam giác MNK có:

     AB = MN;

     \(\widehat {ABI} = \widehat {MNK}\);

     BI = NK.

Vậy \(\Delta ABI = \Delta MNK\)(c.g.c). Suy ra: AI = MK (2 cạnh tương ứng).

Vậy AI = MK.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

We using AI and power community to slove your question

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"