Giải bài 2.36 trang 32 sách bài tập toán 7 - Kết nối tri thức với cuộc sống

2024-09-14 06:29:32

Đề bài

Hãy giải thích tại sao \(\left| {x + y} \right| \le \left| x \right| + \left| y \right|\) với mọi số thực x, y.

Phương pháp giải - Xem chi tiết

\(\left| {x + y} \right|\)=x+y nếu \(x + y \ge 0\)

\(\left| {x + y} \right|\)=- (x+y) nếu \(x + y < 0\)

Sử dụng tính chất \(a \le \left| a \right|,\forall a\)

Lời giải chi tiết

+) Trường hợp 1: Nếu \(x + y \ge 0\) thì \(\left| {x + y} \right| = x + y \le \left| x \right| + \left| y \right|\) (vì \(x \le \left| x \right|, y \le |y|\) với mọi số thực x,y).

+) Trường hợp 2: Nếu \(x + y < 0\) thì \(\left| {x + y} \right| =  - x - y \le \left| { - x} \right| + \left| { - y} \right| = \left| x \right| + \left| y \right|\) (vì \(-x \le \left|-x \right|, -y \le |-y|\) với mọi số thực x,y).

Vậy với mọi \(x,y \in \mathbb{R}\), ta luôn có \(\left| {x + y} \right| \le \left| x \right| + \left| y \right|\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"