Giải bài 3.35 trang 49 sách bài tập toán 7 - Kết nối tri thức với cuộc sống

2024-09-14 06:30:03

Đề bài

Cho hình 3.35. Biết CN là tia phân giác của góc ACM.

a) Chứng minh rằng \(CN//AB\).

b) Tính số đo của góc A.

Phương pháp giải - Xem chi tiết

a)

- Tính góc ACM (kề bù với góc ACB)

- Tính góc MCN (Tia CN là tia phân giác góc ACM)

- Chỉ ra 2 góc đồng vị bằng nhau.

b)

- Chỉ ra 2 góc so le trong bằng nhau.

Lời giải chi tiết

a)

Ta có: \(\widehat {ACM} + \widehat {ACB} = {180^0}\) (2 góc kề bù)

\(\begin{array}{l} \Rightarrow \widehat {ACM} + {40^0} = {180^0}\\ \Rightarrow \widehat {ACM} = {180^0} - {40^0}\\ \Rightarrow \widehat {ACM} = {140^0}\end{array}\)

Vì CN là tia phân giác của góc ACM nên

\(\widehat {ACN} = \widehat {NCM} = \dfrac{{\widehat {ACM}}}{2} = \dfrac{{{{140}^0}}}{2} = {70^0}\)

\( \Rightarrow \widehat {ABC} = \widehat {MCN} (= {70^0})\)

Mà 2 góc này ở vị trí đồng vị nên \(CN// AB\).

b)

Theo câu a) \(CN//AB\) nên \(\widehat A = \widehat {ACN}\) (2 góc so le trong). Mà \( \widehat {ACN}= {70^0}\) nên \(\widehat A =70^0\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"