Giải bài 4.20 trang 58 sách bài tập toán 7 - Kết nối tri thức với cuộc sống

2024-09-14 06:30:15

Đề bài

Cho hình bình hành ABCD có hai đường chéo AC và BD bằng nhau (H.4.19)

a) Chứng minh \(\Delta ABD = \Delta DCA;\Delta ADC = \Delta BCD\).

b) Bằng cách tính số đo góc ADC, hãy cho biết ABCD có phải là hình chữ nhật không. 

Phương pháp giải - Xem chi tiết

a) Chỉ ra các cạnh tương ứng bằng nhau.

b)

-Chứng minh \(\widehat {DAB} = \widehat {ADC}\)

-Chứng minh \(\widehat {ADC} = {90^0}\).

Lời giải chi tiết

a)

Xét \(\Delta ABD\)và \(\Delta DCA\)có:

AB = DC (2 cạnh đối của hình bình hành)

BD = CA (gt)

AD: Cạnh chung

\( \Rightarrow \Delta ABD = \Delta DCA\left( {c - c - c} \right)\)

Xét \(\Delta ADC\) và \(\Delta BCD\) có:

AD = BC (2 cạnh đối của hình bình hành)

AC = BD (gt)

DC: Cạnh chung

\( \Rightarrow \Delta ADC = \Delta BCD\left( {c - c - c} \right)\)

b)

Ta có: \(\Delta ABD = \Delta BCD\left( {cmt} \right) \Rightarrow \widehat {DAB} = \widehat {ADC}\) (góc tương ứng).

Mặt khác vì ABCD là hình bình hành nên \(\widehat {DAB} + \widehat {ADC} = {180^0} \Rightarrow \widehat {DAB} = \widehat {ADC} = \dfrac{{{{180}^0}}}{2} = {90^0}\)

Hình bình hành ABCD có một góc vuông nên là hình chữ nhật. 

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"