Giải bài 4.36 trang 65 sách bài tập toán 7 - Kết nối tri thức với cuộc sống

2024-09-14 06:30:24

Đề bài

Cho AH và DK lần lượt là hai đường cao của hai tam giác ABC và DEF như Hình 4.38. Biết rằng \(\Delta ABC = \Delta DEF\). Hãy chứng minh AH = DK.

Phương pháp giải - Xem chi tiết

Chứng minh \(\Delta HAB = \Delta KDE\left( {ch - gn} \right)\)

Lời giải chi tiết

Ta có:

\(\begin{array}{l}\Delta ABC = \Delta DEF\\ \Rightarrow \left\{ \begin{array}{l}AB = DE\\\widehat {ABC} = \widehat {DEF} hay \widehat {HBA} = \widehat {KED}\end{array} \right.\end{array}\)

Xét \(\Delta HAB\) và \(\Delta KDE\) có:

\(\widehat {AHB} = \widehat {DKE} = {90^0}\\AB = DE\\\widehat {HBA} = \widehat {KED}\left( {cmt} \right)\\ \Rightarrow \Delta HAB = \Delta KDE\left( {ch - gn} \right)\)

\(\Rightarrow AH = DK\) (2 cạnh tương ứng)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"