Giải bài 4.40 trang 66 sách bài tập toán 7 - Kết nối tri thức với cuộc sống

2024-09-14 06:30:27

Đề bài

Cho 5 điểm A, B, C, D, E như Hình 4.42, trong đó DA = DC, DB = DE

a) Chứng minh rằng AB = CE

b) Cho đường thẳng CE cắt AB tại F. Chứng minh rằng \(\widehat {BFC} = {90^0}\) 

Phương pháp giải - Xem chi tiết

a) Chứng minh \(\Delta DAB = \Delta DCE\left( {c - g - c} \right)\)

b) \(\Delta DAB = \Delta DCE\left( {cmt} \right) \Rightarrow \widehat {BAD} = \widehat {ECD}\) 

Lời giải chi tiết

a)

Xét \(\Delta DAB\) và \(\Delta DCE\) có:

\(DA = DC\left( {gt} \right)\\\widehat {ADB} = \widehat {CDE} (= {90^0})\\DB = DE\left( {gt} \right)\\ \Rightarrow \Delta DAB = \Delta DCE\left( {c - g - c} \right)\)

\(\Rightarrow AB = CE\) ( 2 cạnh tương ứng)

b)

Ta có: \(\Delta DAB = \Delta DCE\left( {cmt} \right)\)

\(\Rightarrow \widehat {BAD} = \widehat {ECD}\) ( 2 góc tương ứng)

Do vậy :

\(\begin{array}{l}\widehat {BFC} = {180^0} - \widehat {FCB} - \widehat {CBF} = {180^0} - \widehat {ECD} - \widehat {DBA}\\\,\,\,\,\,\,\,\,\,\,\,\, = {180^0} - \widehat {BAD} - \widehat {DBA} = \widehat {ADB} = {90^0}\end{array}\) 

Vậy \(\widehat {BFC} = {90^0}\) 

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"