Giải bài 4.47 trang 70 sách bài tập toán 7 - Kết nối tri thức với cuộc sống

2024-09-14 06:30:32

Đề bài

Cho tam giác ABH vuông tại đỉnh H có \(\widehat {ABH} = {60^0}\). Trên tia đối của tia HB lấy điểm C sao cho HB = HC (H.4.52). Chứng minh rằng \(\Delta ABC\) là tam giác đều và \(BH = \dfrac{{AB}}{2}\)

Phương pháp giải - Xem chi tiết

-Chứng minh: \(\Delta HAB = \Delta HAC\left( {c - g - c} \right)\)

-Chứng minh: Tam giác ABC đều (tam giác cân có 1 góc bằng 60 độ).

Lời giải chi tiết

Xét \(\Delta HAB\) và \(\Delta HAC\) có:

\(\widehat {AHB} = \widehat {AHC} = {90^0}\\HB = HC\\HA:Chung\\ \Rightarrow \Delta HAB = \Delta HAC\left( {c - g - c} \right)\)

\(\Rightarrow AB = AC\) (2 cạnh tương ứng)

\(\Rightarrow \Delta ABC\) cân tại A 

\(\Rightarrow \widehat{B}=\widehat{C}\)

Mặt khác, theo định lí tổng 3 góc trong một tam giác, ta có: \(\widehat A = {180^0} - \widehat B - \widehat C = {180^0} - 2\widehat B = 180^0-2.60^0={60^0}\)

Ta được:\(\widehat{A}=\widehat{B} (=60^0)\)

\(\Rightarrow \Delta ABC\) cân tại đỉnh C nên CA = CB

\( \Rightarrow AB = BC = CA\)

\( \Rightarrow \Delta ABC\) là tam giác đều

\( \Rightarrow BH = \dfrac{{BC}}{2} = \dfrac{{AB}}{2}\) 

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"