Giải Bài 9.4 trang 48 sách bài tập toán 7 - Kết nối tri thức với cuộc sống

2024-09-14 06:31:36

Đề bài

Cho tam giác ABC với AB > AC. Gọi M là trung điểm của cạnh BC.

a)Hãy so sánh hai góc MAB và MAC.

b)Tia phân giác của góc BAC cắt BC tại D. Hỏi D thuộc đoạn thẳng MB hay đoạn thẳng MC? Vì sao?

Phương pháp giải - Xem chi tiết

a)

- Lấy điểm P sao cho M là trung điểm của AP.

-Chứng minh: \(\Delta AMC = \Delta PMB\left( {c - g - c} \right)\)

-Chứng minh: \(\widehat {MPB} > \widehat {MAB}\)

Lời giải chi tiết

a)

Lấy điểm P sao cho M là trung điểm của AP.

Xét \(\Delta AMC\) và \(\Delta PMB\)có:

AM = PM

MC = MB

\(\widehat {AMC} = \widehat {PMB}\)

\( \Rightarrow \Delta AMC = \Delta PMB\left( {c - g - c} \right)\)
\( \Rightarrow \left\{ \begin{array}{l}AC = PB\\\widehat {MAC} = \widehat {MPB}\end{array} \right.\)

Do AB > AC suy ra AB > PB

Xét tam giác ABP có AB > PB

\(\begin{array}{l} \Rightarrow \widehat {MPB} > \widehat {MAB}\\ \Rightarrow \widehat {MAC} > \widehat {MAB}\end{array}\)

b)

Ta có: AD là tia phân giác của góc BAC nên \(\widehat {DAB} = \widehat {DAC} = \dfrac{{\widehat {BAC}}}{2} \Rightarrow \widehat {BAC} = 2\widehat {DAC}\)

Lại có:

\(\begin{array}{l}\widehat {MAC} > \widehat {MAB}\left( {cmt} \right)\\ \Rightarrow \widehat {MAC} + \widehat {MAC} > \widehat {MAB} + \widehat {MAC}\\ \Rightarrow 2\widehat {MAC} > \widehat {BAC}\\ \Rightarrow 2\widehat {MAC} > 2\widehat {DAC}\\ \Rightarrow \widehat {MAC} > \widehat {DAC}\end{array}\)

Vậy D thuộc đoạn thẳng MC. 

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"