Giải Bài 13 trang 70 sách bài tập toán 7 - Kết nối tri thức với cuộc sống

2024-09-14 06:32:02

Đề bài

Cho bốn điểm A, B, C và D như Hình 2. Biết rằng \(\widehat {BEC} = {40^0};\widehat {EBA} = {110^0};AB = DC\). Chứng minh rằng:

a)Tam giác BEC cân tại đỉnh E.

b)EA = ED.

Phương pháp giải - Xem chi tiết

a)Chứng minh \(\widehat {EBC} = \widehat {ECB} = {70^0}\)

b)Chứng minh: \(\Delta ABE = \Delta DCE\left( {c - g - c} \right)\).

Lời giải chi tiết

a)

Ta có: \(\widehat {ABE} + \widehat {EBC} = {180^0}\)(2 góc kề bù)

\(\begin{array}{l} \Rightarrow {110^0} + \widehat {EBC} = {180^0}\\ \Rightarrow \widehat {EBC} = {180^0} - {110^0}\\ \Rightarrow \widehat {EBC} = {70^0}\end{array}\)

Xét tam giác EBC: \(\widehat E + \widehat B + \widehat C = {180^0}\) (Tổng ba góc trong tam giác)

\(\begin{array}{l} \Rightarrow {40^0} + {70^0} + \widehat C = {180^0}\\ \Rightarrow \widehat C = {180^0} - {110^0}\\ \Rightarrow \widehat C = {70^0}\\ \Rightarrow \widehat {EBC} = \widehat {ECB} = {70^0}\end{array}\)

\( \Rightarrow \Delta EBC\) cân tại E

\( \Rightarrow EB = EC\)

b)CM: EA = ED

Ta có:

\(\begin{array}{l}\widehat {ECD} = {180^0} - \widehat {ECB} = {180^0} - {70^0} = {110^0}\\ \Rightarrow \widehat {ABE} = \widehat {DCE}\end{array}\)

Xét \(\Delta ABE\)và có:

\(\begin{array}{l}BE = CE\left( {cmt} \right)\\\widehat {ABE} = \widehat {DCE}\left( {cmt} \right)\\AB = DC\left( {gt} \right)\\ \Rightarrow \Delta ABE = \Delta DCE\left( {c - g - c} \right)\\ \Rightarrow AE = DE\end{array}\) 

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"