Giải Bài 4 trang 63 sách bài tập toán 7 - Chân trời sáng tạo

2024-09-14 06:34:30

Đề bài

Cho tam giác ABC có \(\widehat {{A^{}}} = {65^o},\widehat B = {54^o}\). Vẽ trực tâm H của tam giác ABC, Tính góc AHB.

Phương pháp giải - Xem chi tiết

Phương pháp

- Sử dụng: tính chất ba đường cao trong tam giác.

- Áp dụng: tổng ba góc trong một tam giác bằng \({180^o}\)

Lời giải chi tiết

Ta có H là giao điểm của hai đường cao AE và BF.

Trong tam giác vuông ABE ta có:

\(\widehat {E{\rm{A}}B} = {90^o} - \widehat B = {90^o} - {54^o} = {36^o}\)

Trong tam giác vuông BAF ta có:

\(\widehat {FBA} = {90^o} - \widehat {{A^{}}} = {90^o} - {65^o} = {25^o}\)

Trong tam giác AHB ta có:

\(\widehat {AHB} = {90^o} - {36^o} - {25^o} = {119^o}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"