Giải Bài 2 trang 65 sách bài tập toán 7 - CTST

2024-09-14 06:34:35

Đề bài

Cho tam giác ABC có M là điểm đồng quy của ba đường phân giác. Qua M vẽ đường thẳng song song với Bc và cắt AB, AC lần lượt tại N và P. Chứng minh rằng

 NP = BN + CP.

Phương pháp giải - Xem chi tiết

- Chứng minh MN = BN

- Chứng minh MP = CP

Suy ra: NP = MN + MP = BN + CP

Lời giải chi tiết

Ta có MN // BC, do đó \(\widehat {{M_1}} = \widehat {{B_1}}\) (so le trong)

Dẫn đến \(\widehat {{M_1}} = \widehat {{B_2}}\)(cùng bằng \(\widehat {{B_1}}\)), suy ra tam giác NMB cân tại N nên  MN = BN

Ta có MP // BC, do đó \(\widehat {{M_2}} = \widehat {{C_2}}\) (so le trong)

Dẫn đến \(\widehat {{M_2}} = \widehat {{C_1}}\)(cùng bằng \(\widehat {{C_2}}\)), suy ra tam giác PMC cân tại P nên  MP = CP

Ta có: NP = MN + MP = BN + CP.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"