Giải bài 36 trang 50 sách bài tập toán 7 - Cánh diều

2024-09-14 06:36:47

Đề bài

Xét đa thức \(P(x) = (2{x^2} + a)(2{x^3} - 3) - 5a(x + 3) + 1\) (với a là một số).

a) Thu gọn và sắp xếp đa thức P(x) theo số mũ giảm dần của biến

b) Tìm a sao cho tổng các hệ số của đa thức P(x) bằng – 37

Phương pháp giải - Xem chi tiết

Bước 1: Rút gọn đa thức P(x)

Bước 2: Tìm tổng các hệ số của đa thức P(x) là một đa thức Q(a) với biến a

Bước 3: Tìm a sao cho Q(a) + 37 = 0

Lời giải chi tiết

a) \(P(x) = (2{x^2} + a)(2{x^3} - 3) - 5a(x + 3) + 1\)\( = 4{x^5} - 6{x^2} + 2a{x^3} - 3a - 5ax - 15a + 1\)

                                                          \( = 4{x^5} + 2a{x^3} - 6{x^2} - 5ax + 1 - 18a\)

b) Tổng các hệ số của đa thức P(x) là: \(4 + 2a - 6 - 5a + 1 - 18a =  - 21a - 1\)

Theo giả thiết, \( - 21a - 1 =  - 37 \Rightarrow  - 21a =  - 37 + 1 \Rightarrow  - 21a =  - 36 \Rightarrow a = \frac{{12}}{7}\)

Vậy với \(a = \frac{{12}}{7}\) thì tổng các hệ số của đa thức P(x) bằng – 37

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"