Giải Bài 5 trang 68 sách bài tập toán 7 - Cánh diều

2024-09-14 06:37:00

Đề bài

Cho tam giác ABC có  Tia phân giác của góc C cắt cạnh AB tại M. Tính số đo của \(\widehat {AMC}\) và \(\widehat {BMC}\)

Phương pháp giải - Xem chi tiết

- Tính góc C

- Vì CM là tia phân giác của góc C nên \(\widehat {{C_1}} = \widehat {{C_2}} = \frac{{\widehat C}}{2}\)

- Tính số đo góc \(\widehat {AMC}\) và \(\widehat {BMC}\) dựa vào tổng ba góc trong một tam giác bằng \({180^o}\)

Lời giải chi tiết

 

Xét ∆ABC có: \(\widehat {{A^{}}} + \widehat B + \widehat C = {180^o}\) (định lí tổng ba góc của một tam giác).

Suy ra \(\widehat {ACB} = {180^o} - \widehat {{A^{}}} - \widehat B = {180^o} - {50^o} - {70^o} = {60^o}\)

Vì tia CM là tia phân giác của nên ta có:

\(\widehat {{C_1}} = \widehat {{C_2}} = \frac{{\widehat C}}{2} = \frac{{{{60}^o}}}{2} = {30^o}\)

Xét ∆AMC có: \(\widehat {AMC} + \widehat {{C_2}} + \widehat {{A^{}}} = {180^o}\) (tổng ba góc của một tam giác).

Suy ra \(\widehat {AMC} = {180^o} - \widehat {{C_2}} - \widehat {{A^{}}} = {180^o} - {30^o} - {50^o} = {100^o}\)

 Xét ∆BMC có: \(\widehat {BMC} + \widehat {{C_1}} + \widehat B = {180^o}\) (tổng ba góc của một tam giác).

Suy ra \(\widehat {BMC} = {180^o} - \widehat {{C_1}} - \widehat B = {180^o} - {30^o} - {70^o} = {80^o}\)

 Vậy \(\widehat {AMC} = {100^o};\widehat {BMC} = {80^o}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"