Giải Bài 9 trang 69 sách bài tập toán 7 - Cánh diều

2024-09-14 06:37:02

Đề bài

Cho tam giác ABC, tia phân giác của \(\widehat {BAC}\) cắt cạnh BC tại D. Tính số đo mỗi góc của tam giác ABC, biết \(\widehat {A{\rm{D}}B} = {80^o}\) và \(\widehat B = 1,5\widehat C\).

Phương pháp giải - Xem chi tiết

Sử dụng tổng ba góc của một tam giác bằng \({180^o}\) và tia phân giác của một góc để tìm số đo mỗi góc của tam giác ABC

Lời giải chi tiết

 

•Xét ∆ABD có: \({\hat A_1} + \hat B + \widehat {ADB} = 180^\circ \) (tổng ba góc của một tam giác)

Suy ra \({\hat A_1} + \hat B = 180^\circ  - \widehat {ADB} = 180^\circ  - 80^\circ  = 100^\circ \)

 Khi đó \({\hat A_1} = 100^\circ  - \hat B\)

Lại có \(\hat B = 1,5\hat C\)

Suy ra \({\hat A_1} = 100^\circ  - 1,5\hat C\)(1)

•Vì \(\widehat {ADB}\) là góc ngoài của tam giác ACD tại đỉnh D nên \(\widehat {ADB} = \hat C + {\hat A_2}\)

Suy ra \({\hat A_2} = \widehat {ADB} - \hat C = {80^o} - \hat C\)(2)

• Ta có AD là tia phân giác của góc BAC nên \({\hat A_1} = {\hat A_2}\) (3)

 Từ (1),(2),(3) ta có: \(100^\circ  - 1,5\hat C = 80^\circ  - \hat C\)

 Hay \(1,5\hat C - \hat C = 100^\circ  - 80^\circ \)

Suy ra \(\hat C = 40^\circ \).

Do đó \(\hat B = 1,5\hat C = 1,5.40^\circ  = 60^\circ \)

Xét ∆ABC có: \(\widehat {BAC} + \widehat B + \widehat C = {180^o}\) (tổng ba góc của một tam giác).

Do đó \(\widehat {BAC} = 180^\circ  - \hat C - \hat B = 180^\circ  - 40^\circ  - 60^\circ  = 80^\circ \)

 Vậy \(\hat C = 40^\circ ,\hat B = 60^\circ ,\widehat {BAC} = 80^\circ .\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"