Giải Bài 25 trang 73 sách bài tập toán 7 - Cánh diều

2024-09-14 06:37:10

Đề bài

Cho ∆ABC = ∆XYZ, có \(\widehat {{A^{}}} + \widehat Y = {120^o}\) và \(\widehat {{A^{}}} - \widehat Y = {40^o}\) . Tính số đo mỗi góc của từng tam giác trên.

Phương pháp giải - Xem chi tiết

Sử dụng ∆ABC = ∆XYZ và điều kiện đề bài đưa ra để tín số đo các góc của hai tam giac

Lời giải chi tiết

Do \(\hat A + \hat Y = 120^\circ \) và \(\widehat {{A^{}}} - \widehat Y = {40^o}\) nên \(2\widehat {{A^{}}} = {120^o} + {40^o} = {160^o}\)

Suy ra \(\widehat {{A^{}}} = {160^o}:2 = {80^o}\)

Do đó \(\widehat Y = {120^o} - {80^o} = {40^o}\)

Vì ∆ABC = ∆XYZ (giả thiết)

Nên \(\widehat {{A^{}}} = \widehat X,\widehat B = \widehat Y,\widehat C = \widehat Z\) (các cặp góc tương ứng).

Mà \(\widehat {{A^{}}} = {80^o},\widehat Y = {40^o}\)

 Suy ra \(\widehat X = {80^o},\widehat B = {40^o}\)

 Xét ∆ABC có: \(\widehat {{A^{}}} + \widehat B + \widehat C = {180^o}\) (tổng ba góc của một tam giác).

Do đó  \(\widehat C = {180^o} - \widehat {{A^{}}} - \widehat B = {180^o} - {80^o} - {40^o} = {60^o}\)

Suy ra \(\widehat Z = {60^o}\)

Vậy \(\widehat {{A^{}}} = {80^o},\widehat B = {40^o},\widehat C = {60^o},\widehat X = {80^o},\widehat Y = {40^o},\widehat Z = {60^o}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"