Giải Bài 33 trang 78 sách bài tập toán 7 - Cánh diều

2024-09-14 06:37:16

Đề bài

Cho tam giác ABC. Trên tia đối của tia AB, AC lần lượt lấy các điểm D và E sao cho AD = AB và AE = AC. Gọi M, N lần lượt là trung điểm của BC và DE.

Chứng minh:

a) ∆ABC = ∆ADE;

b) DE = BC và DE song song với BC;

c) ∆AEN = ∆ACM;

d) M, A, N thẳng hàng.

Phương pháp giải - Xem chi tiết

- Xét các điều kiện về cạnh và góc để chứng minh ∆ABC = ∆ADE theo trường hợp cạnh – góc – cạnh từ đó suy ra các góc và cạnh tương ứng bằng nhau  tương ứng bằng nhau nên DE = BC và DE song song với BC.

- Xét các điều kiện về cạnh và góc đề chứng minh ∆AEN = ∆ACM theo trường hợp cạnh – góc – cạnh từ đó chứng minh \(\widehat {NAM} = {180^o}\) suy ra M, A, N thẳng hàng.

Lời giải chi tiết

 

a) Xét ΔABC và ΔADE có:

AB = AD (giả thiết),

\(\widehat {BAC} = \widehat {DA{\rm{E}}}\) (hai góc đối đỉnh),

AC = AE (giả thiết).

Do đó ΔABC = ∆ADE (c.g.c).

Vậy ΔABC = ∆ADE.

b) Vì ∆ABC = ∆ADE (chứng minh câu a)

Suy ra BC = DE (hai cạnh tương ứng), \(\widehat {ACB} = \widehat {AED}\) (hai góc tương ứng).

Mặt khác \(\widehat {ACB},\widehat {AED}\) là hai góc ở vị trí so le trong.

Suy ra DE // BC.

Vậy DE = BC và DE song song với BC.

c) Ta có: \(EN = \frac{{DE}}{2};MC = \frac{{BC}}{2};DE = BC\) nên EN = MC

Xét ∆AEN và ∆ACM có:

AE = AC (giả thiết),

\(\widehat {NEA} = \widehat {MCA}\) (do \(\widehat {AED} = \widehat {ACB}\))

EN = CM (chứng minh trên),

Suy ra ∆AEN = ∆ACM (c.g.c)

Vậy ∆AEN = ∆ACM.

d) Do ∆AEN = ∆ACM (chứng minh câu c).

Nên \(\widehat {NAE} = \widehat {MAC}\) (hai góc tương ứng)

Ta có: \(\widehat {NAM} = \widehat {NAE} + \widehat {EAM} = \widehat {MAC} + \widehat {EAM}\)

 Mà \(\widehat {MAC} + \widehat {EAM} = \widehat {EAC} = 180^\circ \) (hai góc kề bù)

Do đó \(\widehat {NAM} = {180^o}\)

Suy ra M, A, N thẳng hàng

Vậy M, A, N thẳng hàng.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"