Giải Bài 55 trang 85 sách bài tập toán 7 - Cánh diều

2024-09-14 06:37:31

Đề bài

Cho tam giác ABC vuông tại A, M là trung điểm của AC.

a) Vẽ E là hình chiếu của A trên đường thẳng BM.

b) Vẽ F là hình chiếu của C trên đường thẳng BM.

c) Chứng minh BE + BF > 2AB.

Phương pháp giải - Xem chi tiết

- Vẽ hình chiếu là vẽ đường vuông góc với chân đường vuông góc là hình chiếu.

- Sử dụng đường vuông góc và đường xiên để chứng minh BE + BF > 2AB

Lời giải chi tiết

a)

 

b)

 

c) Xét ∆MAE và ∆MCF có:

\(\widehat {AEM} = \widehat {CFM}\left( { = 90^\circ } \right)\)

MA = MC (vì M là trung điểm của AC),

\(\widehat {AME} = \widehat {CMF}\) (hai góc đối đỉnh)

Do đó ∆MAE = ∆MCF (cạnh huyền – góc nhọn).

Suy ra ME = MF (hai cạnh tương ứng).

Ta có BA và BM lần lượt là đường vuông góc và đường xiên kẻ từ điểm B xuống đường thẳng AC

Suy ra AB < BM.

Hay AB < BE + EM (1) và AB < BF – MF (2)

Cộng vế theo vế của (1) và (2) ta có:

AB + AB < BE + EM + BF – MF

Mà ME = MF

Do đó 2AB < BE + BF.

Vậy BE + BF > 2AB.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"