Giải Bài 56 trang 85 sách bài tập toán 7 - Cánh diều

2024-09-14 06:37:31

Đề bài

Cho tam giác ABC vuông cân tại A. Một đường thẳng a đi qua A. Gọi M và N lần lượt là hình chiếu của B và C trên đường thẳng a. Chứng minh:

a) \(\widehat {ABM} = \widehat {CAN}\)

b) CN = MA;

c) Nếu a song song với BC thì MA = AN.

Phương pháp giải - Xem chi tiết

- Sử dụng tổng ba góc trong một tam giác để chứng minh \(\widehat {ABM} = \widehat {CAN}\)

- Chứng minh: \(\Delta MAB = \Delta NCA\) suy ra MA = NC

- Chứng minh: Nếu a // BC suy ra MA = MB (1)

Nếu a // BC suy ra CN = AN (2)

Từ (1), (2) và câu a) suy ra MA = AN.

Lời giải chi tiết

 

a) Xét ∆MAB vuông tại M có: \(\widehat {ABM} + \widehat {MAB} = 90^\circ \) (trong tam giác vuông, tổng hai góc nhọn bằng 90o).

Ta có \(\widehat {MAB} + \widehat {BAC} + \widehat {CAN} = 180^\circ \)

Suy ra \(\widehat {MAB} + \widehat {CAN} = 180^\circ  - \widehat {BAC} = 90^\circ \)

Lại có \(\widehat {ABM} + \widehat {MAB} = 90^\circ \)

Suy ra \(\widehat {ABM} = \widehat {CAN}\)

Vậy \(\widehat {ABM} = \widehat {CAN}\)

b) Xét ∆MAB và ∆NCA có:

\(\widehat {BMA} = \widehat {ANC}\left( { = 90^\circ } \right)\)

BA = AC (vì tam giác ABC vuông cân tại A),

\(\widehat {ABM} = \widehat {CAN}\) (chứng minh câu a).

Do đó ∆MAB = ∆NCA (cạnh huyền – góc nhọn).

Suy ra MA = NC (hai cạnh tương ứng).

Vậy MA = NC.

c) Vì tam giác ABC cân tại A nên \(\widehat {ACB} = \widehat {ABC}\)

 Lại có \(\widehat {ACB} + \widehat {ABC} + \widehat {BAC} = 180^\circ \) (tổng ba góc của tam giác ABC)

Suy ra \(\widehat {ACB} = \widehat {ABC} = \frac{{180^\circ  - 90^\circ }}{2} = 45^\circ \)

• Nếu a // BC thì \(\widehat {MAB} = \widehat {ABC}\) (hai góc so le trong).

Do đó \(\widehat {MAB} = 45^\circ \)

Xét ∆ABM có \(\widehat {AMB} + \widehat {MBA} + \widehat {MAB} = 180^\circ \) (tổng ba góc của một tam giác)

Suy ra \(\widehat {MBA} = 180^\circ  - \widehat {AMB} - \widehat {MAB} = 180^\circ  - 90^\circ  - 45^\circ  = 45^\circ \)

Do đó \(\widehat {MAB} = \widehat {MBA}\) (cùng bằng 45°).

Xét ∆AMB có \(\widehat {AMB} = 90^\circ \) và \(\widehat {MAB} = \widehat {MBA}\) nên ∆AMB vuông cân tại M.

Suy ra MA = MB (1)

• Nếu a // BC thì \(\widehat {CAN} = \widehat {ACB} = 45^\circ \) (hai góc so le trong)

Xét ∆ABM có \(\widehat {ACN} + \widehat {ANC} + \widehat {CAN} = 180^\circ \) (tổng ba góc của một tam giác)

Suy ra \(\widehat {ACN} = 180^\circ  - \widehat {ANC} - \widehat {CAN} = 180^\circ  - 90^\circ  - 45^\circ  = 45^\circ \)

 Do đó \(\widehat {ACN} = \widehat {CAN}\) (cùng bằng 45°).

Xét ∆ANC có \(\widehat {ANC} = 90^\circ \) và \(\widehat {ACN} = \widehat {CAN}\) nên ∆ANC vuông cân tại N.

Suy ra CN = AN (2)

Từ (1) và (2) suy ra MA = AN.

Vậy MA = AN.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"