Giải Bài 86 trang 94 sách bài tập toán 7 - Cánh diều

2024-09-14 06:37:49

Đề bài

Cho tam giác ABC cân ở A. Đường trung trực của cạnh AC cắt AB tại D. Biết CD là tia phân giác của góc ACB. Tính số đo các góc của tam giác ABC.

Phương pháp giải - Xem chi tiết

- Sử dụng tính chất ba đường trung trực và tía phân giác trong tam giác cân, tổng ba góc của một tam giác để tính các số đo góc của tam giác ABC.

Lời giải chi tiết

 

Đặt \(\widehat {DCA} = x\).

Vì CD là tia phân giác của góc ACB nên \(\widehat {ACB} = 2\widehat {ACD} = 2\widehat {BCD} = 2x\)

Vì tam giác ABC cân tại A nên AB = AC, \(\widehat {ABC} = \widehat {ACB}\)

Suy ra \(\widehat {ABC} = 2x\)

Do điểm D nằm trên đường trung trực của canhk AC nên DA = DC.

Do đó tam giác DAC cân ở D nên \(\widehat {DAC} = \widehat {DCA} = x\).

Xét ∆ABC có \(\widehat {ACB} + \widehat {ABC} + \widehat {BAC} = 180^\circ \) (tổng ba góc của một tam giác)

Hay 2x + 2x + x = 180° nên 5x = 180°.

Suy ra x = 180°: 5 = 36°.

Do đó \(\widehat {ACB} = \widehat {ABC} = 2.36^\circ  = 72^\circ ,\widehat {BAC} = 36^\circ \)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"