Đề thi giữa kì 2 Toán 7 Chân trời sáng tạo - Đề số 9

2024-09-14 06:42:33
I. Trắc nghiệm
Câu 1 :

Thay tỉ số 1,2 : 1,35 bằng tỉ số giữa các số nguyên ta được:

  • A
    50 : 81.
  • B
    8 : 9.
  • C
    5 : 8.
  • D
    1 : 10.

Đáp án : B

Phương pháp giải :

Dựa vào kiến thức về tỉ lệ thức.

Lời giải chi tiết :

Ta có: \(1,2:1,35 = \frac{{1,2}}{{1,35}} = \frac{8}{9} = 8:9\).

Câu 2 :

Biết \(\frac{x}{2} = \frac{y}{3}\) và \(x + y =  - 15\). Khi đó giá trị của x, y là

  • A
    x = 6, y = 9.
  • B
    x = −7, y = −8.
  • C
    x = 8, y = 12.
  • D
    x = −6, y = −9.

Đáp án : D

Phương pháp giải :

Dựa vào tính chất dãy tỉ số bằng nhau.

Lời giải chi tiết :

Ta có: \(\frac{x}{2} = \frac{y}{3} = \frac{{x + y}}{{2 + 3}} = \frac{{ - 15}}{5} =  - 3\) (tính chất dãy tỉ số bằng nhau)

Suy ra \(x =  - 3.2 =  - 6;y =  - 3.3 =  - 9\).

Câu 3 :

Biết đại lượng y tỉ lệ thuận với đại lượng x với các cặp giá trị tương ứng trong bảng sau:

Giá trị cần điền vào “?” là

  • A
    \(\frac{{ - 1}}{5}\).
  • B
    \(\frac{1}{5}\).
  • C
    5.
  • D
    \( - 5\).

Đáp án : A

Phương pháp giải :

Dựa vào kiến thức về hai đại lượng tỉ lệ thuận.

Lời giải chi tiết :

Vì y tỉ lệ thuận với x nên \(k = \frac{y}{x} = \frac{{ - 5}}{1} =  - 5 = \frac{1}{?}\) suy ra \(? = 1:\left( { - 5} \right) = \frac{{ - 1}}{5}\).

Câu 4 :

Cho biết y tỉ lệ nghịch với x theo hệ số tỉ lệ a và khi \(x =  - 2\) thì \(y = 4\). Khi đó, hệ số a bằng bao nhiêu?

  • A
    \( - 2\).
  • B
    \( - 6\).
  • C
    \( - 8\).
  • D
    \( - 4\).

Đáp án : C

Phương pháp giải :

Dựa vào kiến thức về hai đại lượng tỉ lệ nghịch.

Lời giải chi tiết :

Vì y tỉ lệ nghịch với x theo hệ số tỉ lệ a nên \(a = xy = \left( { - 2} \right).4 =  - 8\).

Câu 5 :

Bộ ba độ dài đoạn thẳng nào sau đây tạo thành một tam giác?

  • A
    5cm; 4cm; 1cm.
  • B
    3cm; 4cm; 5cm.
  • C
    5cm; 2cm; 2cm.
  • D
    1cm; 4cm; 10cm.

Đáp án : B

Phương pháp giải :

Dựa vào quan hệ giữa ba cạnh của một tam giác.

Lời giải chi tiết :

Ta có: 5 – 4 = 1 nên 5cm; 4cm; 1cm không thể tạo thành một tam giác.

3cm; 4cm; 5cm có thể tạo thành một tam giác nên ta chọn đáp án B.

2 + 2 = 4 < 5 nên 5cm; 2cm; 2cm không thể tạo thành một tam giác.

1 + 4 = 5 < 10 nên 1cm; 4cm; 10cm không thể tạo thành một tam giác.

Câu 6 :

Cho hình vẽ. Hai tam giác trên bằng nhau theo trường hợp

  • A
    Cạnh – góc – góc.
  • B
    Cạnh – góc – cạnh.
  • C
    Góc – cạnh – góc.
  • D
    Cả A, B, C đều đúng.

Đáp án : B

Phương pháp giải :

Dựa vào kiến thức về hai tam giác bằng nhau.

Lời giải chi tiết :

Xét tam giác ABC và tam giác DEF có:

\(\begin{array}{l}AB = DE\\\widehat {ABC} = \widehat {DEF}\\BC = EF\end{array}\)

Suy ra \(\Delta ABC = \Delta DEF\) (cạnh – góc – cạnh)

Câu 7 :

Cho hình vẽ. Số đo của \(\widehat {EFH}\) là

  • A
    105°.
  • B
    115°.
  • C
    125°.
  • D
    135°.

Đáp án : D

Phương pháp giải :

Dựa vào tính chất của tam giác cân và hai góc kề bù.

Lời giải chi tiết :

Tam giác DEF có \(\widehat D = {90^0}\) và DE = DF nên tam giác DEF vuông cân tại D.

Suy ra \(\widehat {DEF} = \widehat {DFE} = \frac{{{{180}^0} - {{90}^0}}}{2} = {45^0}\).

Ta có \(\widehat {DFE} + \widehat {EFH} = {180^0}\) (hai góc kề bù)

Suy ra \(\widehat {EFH} = {180^0} - \widehat {DFE} = {180^0} - {45^0} = {135^0}\).

Câu 8 :

Cho ABCD là hình chữ nhật như hình vẽ, điểm E nằm trên cạnh CD. Khẳng định nào sau đây là sai?

  • A
    AE < AD.
  • B
    AC > AD.
  • C
    AC > AE.
  • D
    AD < AE.

Đáp án : A

Phương pháp giải :

Dựa vào quan hệ giữa đường xiên và hình chiếu.

Lời giải chi tiết :

Xét tam giác vuông ACD có AD < AC (trong tam giác vuông, cạnh huyền là cạnh lớn nhất)

Vì E nằm trên cạnh CD nên DE < DC suy ra AE < AC (quan hệ giữa đường vuông góc và đường xiên.

Suy ra AD < AE < AC nên A sai.

Câu 9 :

Điền vào chỗ trống sau: “Đường thẳng vuông góc với một đoạn thẳng tại … của nó được gọi là đường trung trực của đoạn thẳng đó”.

  • A
    Trung trực.
  • B
    Giao điểm.
  • C
    Trọng tâm.
  • D
    Trung điểm.

Đáp án : D

Phương pháp giải :

Dựa vào khái niệm về đường trung trực của đoạn thẳng.

Lời giải chi tiết :

“Đường thẳng vuông góc với một đoạn thẳng tại trung điểm của nó được gọi là đường trung trực của đoạn thẳng đó”.

Câu 10 :

Biết y tỉ lệ thuận với x theo hệ số tỉ lệ k = 2. Khi x = –3 thì giá trị của y bằng bao nhiêu?

  • A
    -6.
  • B
     0.
  • C
    -9.
  • D
    -1.

Đáp án : A

Phương pháp giải :

Dựa vào kiến thức về hai đại lượng tỉ lệ thuận.

Lời giải chi tiết :

Vì y tỉ lệ thuận với x theo hệ số tỉ lệ k = 2 nên \(y = 2x\).

Thay \(x =  - 3\) vào công thức ta được: \(y = 2.\left( { - 3} \right) =  - 6\).

Câu 11 :

Cho x và y là hai đại lượng tỉ lệ nghịch với nhau và khi x = –12 thì y = 8. Khi x = 3 thì y bằng

  • A
    -32.
  • B
    32.
  • C
    -2.
  • D
    2.

Đáp án : A

Phương pháp giải :

Dựa vào kiến thức về hai đại lượng tỉ lệ nghịch.

Lời giải chi tiết :

Vì hai đại lượng x và y là hai đại lượng tỉ lệ nghịch với nhau nên \(a =  - 12.8 =  - 96\).

Thay \(x = 3\) vào công thức ta được: \( - 96 = 3.y\) suy ra \(y =  - 32\).

Câu 12 :

Hai tam giác bằng nhau là

  • A
    Hai tam giác có ba cặp cạnh tương ứng bằng nhau.
  • B
    Hai tam giác có ba cặp góc tương ứng bằng nhau.
  • C
    Hai tam giác có hai cạnh bằng nhau.
  • D
    Hai tam giác có ba cặp cạnh, ba cặp góc tương ứng bằng nhau.

Đáp án : D

Phương pháp giải :

Dựa vào kiến thức về hai tam giác bằng nhau.

Lời giải chi tiết :

Hai tam giác bằng nhau là hai tam giác có ba cặp cạnh, ba cặp góc tương ứng bằng nhau.

II. Tự luận
Câu 1 :

Tìm số hữu tỉ x trong các tỉ lệ thức sau:

a) \(\frac{{ - 6}}{x} = \frac{9}{{ - 15}}\)

b) \(\frac{{ - 4}}{x} = \frac{x}{{ - 49}}\)

Phương pháp giải :

Áp dụng tính chất của tỉ lệ thức.

Lời giải chi tiết :

a) Ta có: \(\frac{{ - 6}}{x} = \frac{9}{{ - 15}}\)

Suy ra \(\left( { - 6} \right).\left( { - 15} \right) = 9.x\)

\(x = \frac{{\left( { - 6} \right).\left( { - 15} \right)}}{9} = 10\)

Vậy x = 10.

b) Ta có: \(\frac{{ - 4}}{x} = \frac{x}{{ - 49}}\)

Suy ra \(\left( { - 4} \right)\left( { - 49} \right) = x.x\)

\(\begin{array}{l}{x^2} = 196\\x =  \pm 14\end{array}\)

Vậy \(x =  \pm 14\).

Câu 2 :

a) Cho \(\frac{a}{b} = \frac{6}{5}\). Tìm a, b biết: a – b = 3

b) Cho \(\frac{x}{2} = \frac{y}{3} = \frac{z}{5}\). Tìm x, y, z biết \(x - y + z = 32\)

Phương pháp giải :

Áp dụng tính chất của dãy tỉ số bằng nhau.

Lời giải chi tiết :

a) Ta có: \(\frac{a}{b} = \frac{6}{5}\) suy ra \(\frac{a}{6} = \frac{b}{5}\).

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{a}{6} = \frac{b}{5} = \frac{{a - b}}{{6 - 5}} = \frac{3}{1} = 3\).

Suy ra \(a = 3.6 = 18\); \(b = 3.5 = 15\).

Vậy a = 16; b = 15.

b) Ta có: \(\frac{x}{2} = \frac{y}{3} = \frac{z}{5}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{2} = \frac{y}{3} = \frac{z}{5} = \frac{{x - y + z}}{{2 - 3 + 5}} = \frac{{32}}{4} = 8\).

Suy ra \(x = 8.2 = 16\)

\(\begin{array}{l}y = 8.3 = 24\\z = 8.5 = 40\end{array}\)

Vậy \(x = 16;y = 24;z = 40\).

Câu 3 :

Ba đơn vị cùng vận chuyển 700 tấn hàng. Đơn vị A có 10 xe trọng tải mỗi xe là 5 tấn; đơn vị B có 20 xe trọng tải mỗi xe là 4 tấn; đơn vị C có 14 xe trọng tải mỗi xe là 5 tấn. Hỏi mỗi đơn vị vận chuyển được bao nhiêu tấn hàng, biết mỗi xe đều chở một số chuyến như nhau?

Phương pháp giải :

Dựa vào tính chất của dãy tỉ số bằng nhau.

Lời giải chi tiết :

Gọi x, y, z (tấn)lần lượt là khối lượng hàng các đơn vị A, B, C vận chuyển (x, y, z > 0).

Theo đề bài ta suy ra: \(\frac{x}{{50}} = \frac{y}{{80}} = \frac{z}{{70}}\) và \(x + y + z = 700\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\begin{array}{l}\frac{x}{{50}} = \frac{y}{{80}} = \frac{z}{{70}} = \frac{{x + y + z}}{{50 + 80 + 70}} = \frac{{700}}{{200}} = 3,5\\x = 175;\quad y = 280;\quad z = 245\end{array}\)

Vậy khối lượng hàng các đơn vị A, B, C vận chuyển lần lượt là 175; 280; 245 tấn.

Câu 4 :

Cho góc xOy khác góc bẹt có Ot là tia phân giác. Qua điểm H thuộc tia Ot, kẻ đường vuông góc với Ot và cắt Ox và Oy theo thứ tự A và B.

a) Chứng minh OA = OB.

b) Lấy điểm C nằm giữa O và H. Chứng minh \(\widehat {ACH} = \widehat {HCB}\).

c) AC cắt Oy ở D. Trên tia Ox lấy điểm E sao cho OE = OD. Chứng minh ba điểm B, C, E thẳng hàng.

Phương pháp giải :

a) Chứng minh được: ∆AHO = ∆BHO (góc – cạnh – góc)

Suy ra  OA = OB (hai cạnh tương ứng)

b) Chứng minh được: ∆AHC = ∆BHC (hai cạnh góc vuông)

Suy ra \(\widehat {ACH} = \widehat {HCB}\) (hai góc tương ứng)

c) Chứng minh được: ∆OEC = ∆ODC (c.g.c)

Chứng minh được: \(\widehat {ECO} + \widehat {OCD} + \widehat {BCD} = {180^0}\)

Suy ra ba điểm E, C, B thẳng hàng.

Lời giải chi tiết :

a) Xét tam giác AHO và tam giác BHO có:

\(\widehat {AOH} = \widehat {BOH}\) (Ot là tia phân giác của \(\widehat {AOB}\))

OH chung

\(\widehat {AHO} = \widehat {BHO}\left( { = {{90}^0}} \right)\)

Suy ra \(\Delta AHO = \Delta BHO\left( {g.c.g} \right)\)

Suy ra OA = OB (hai cạnh tương ứng) (đpcm)

b) \(\Delta AHO = \Delta BHO\) suy ra AH = HB (hai cạnh tương ứng)

Xét tam giác AHC và tam giác BHC có:

HC chung

\(\widehat {AHC} = \widehat {BHC}\left( { = {{90}^0}} \right)\)

AH = HB

Suy ra \(\Delta AHC = \Delta BHC\) (hai cạnh góc vuông)

Suy ra \(\widehat {ACH} = \widehat {HCB}\) (hai góc tương ứng)

c) Xét tam giác OCE và OCD có:

OE = OD

\(\widehat {EOC} = \widehat {DOC}\)

OC chung

Suy ra ∆OEC = ∆ODC (c.g.c)

Suy ra EC = DC (hai cạnh tương ứng)

Ta có OA = OB và OE = OD nên AE = BD.

Xét \(\Delta ECA\) và \(\Delta DCB\) có:

EC = ED (cmt)

EA = DB (cmt)

CA = CB (\(\Delta AHC = \Delta BHC\))

Suy ra \(\Delta ECA = \Delta DCB\) (c.c.c)

Suy ra \(\widehat {ECA} = \widehat {DCB}\) (hai góc tương ứng)

Mặt khác \(\widehat {ECA} + \widehat {ECD} = {180^0}\) (vì AC cắt Oy tại D)

Suy ra \(\widehat {DCB} + \widehat {ECD} = {180^0}\) hay B, C, E thẳng hàng (đpcm).

Câu 5 :

Cho tỉ lệ thức \(\frac{a}{b} = \frac{c}{d}\). Chứng minh: \(\frac{{ab}}{{cd}} = \frac{{{a^2} - {b^2}}}{{{c^2} - {d^2}}}\).

Phương pháp giải :

Đặt \(\frac{a}{b} = \frac{c}{d} = k\).

Áp dụng dãy tỉ số bằng nhau để chứng minh.

Lời giải chi tiết :

Đặt \(\frac{a}{b} = \frac{c}{d} = k \Rightarrow \left\{ {\begin{array}{*{20}{l}}{a = bk}\\{c = dk}\end{array}} \right.\)

Do đó ta có:

\(\frac{{ac}}{{bd}} = \frac{{bkdk}}{{bd}} = {k^2}(1)\)

Ta cũng có:

\(\frac{{{a^2} + {c^2}}}{{{b^2} + {d^2}}} = \frac{{{{(bk)}^2} + {{(dk)}^2}}}{{{b^2} + {d^2}}} = \frac{{{b^2}{k^2} + {d^2}{k^2}}}{{{b^2} + {d^2}}} = \frac{{{k^2}\left( {{b^2} + {d^2}} \right)}}{{{b^2} + {d^2}}} = {k^2}(2)\)

Từ (1) và (2) suy ra:

\(\frac{{ac}}{{bd}} = \frac{{{a^2} + {c^2}}}{{{b^2} + {d^2}}} = \left( {{k^2}} \right)\) (đpcm)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"