Giải bài 5 trang 68 vở thực hành Toán 7

2024-09-14 06:46:53

Đề bài

Bài 5. Cho hình vẽ dưới đây. Biết rằng AD = BC, \(\widehat {DAC} = \widehat {CBD}\), O là giao điểm của AC và BD. Chứng minh rằng AO = BO.

Phương pháp giải - Xem chi tiết

Chứng minh hai tam giác AOD và BOC bằng nhau

Lời giải chi tiết

Ta có \(\widehat {AOD} = \widehat {BOC}\)(hai góc đối đỉnh).

Do tổng các góc trong mỗi tam giác ADO và BCO bằng \({180^o}\) nên ta có

\(\widehat {ADO} = {180^o} - \widehat {DOA} - \widehat {DAO} = {180^o} - \widehat {BOC} - \widehat {CBO} = \widehat {BCO}\)

Hai tam giác AOD và BOC có

\(\widehat {ADO} = \widehat {BCO}\)(chứng minh trên)

AD = BC (theo giả thiết)

\(\widehat {DAO} = \widehat {DAC} = \widehat {CBD} = \widehat {CBO}\)(theo giả thiết)

Vậy \(\Delta AOD = \Delta BOC\)(g – c – g ). Do đó AO = BO.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"