Giải bài 3 (4.31) trang 76 vở thực hành Toán 7

2024-09-14 06:47:06

Đề bài

Bài 3 (4.31). Cho năm điểm A, B,C,D,O như hình vẽ. Biết rằng OA = OB, OC = OD.

 

a) Chứng minh rằng AC=BD.

b) Chứng minh rằng \(\Delta ACD = \Delta BDC\)

Phương pháp giải - Xem chi tiết

a) Chứng minh hai tam giác OAC và OBD bằng nhau

b) Chứng minh hai tam giác ACD và BDC bằng nhau theo trường hợp c-c-c

Lời giải chi tiết

a) Xét hai tam giác OAC và OBD ta có:

OA = OB (theo giả thiết)

\(\widehat {AOC} = \widehat {BOD}\)(hai góc đối đỉnh)

OC = OD (theo giả thiết)

Vậy \(\Delta OAC = \Delta OBD\)( c – g –c). Do đó AC = BD.

b) Xét hai tam giác ACD và BDC ta có:

AC = BD (chứng minh trên)

CD là cạnh chung

AD = AO + OD = BO + OC = BC

Vậy \(\Delta ACD = \Delta BDC\)( c-c-c)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"